Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 2): 126712, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673164

RESUMO

Bacterial cellulose (BC) is a biomaterial being investigated for a range of applications. Herein, BC films derived from nata de coco pieces are reinforced by two-dimensional molybdenum disulfide (MoS2) and helical carbon nanotubes (HCNTs) to enhance their tensile mechanical properties, and the biocompatibility of the BC composite films is demonstrated. A simple preparation is presented using a kitchen blender to disperse and blend the BC fibers and additives in a common fabrication medium, followed by vacuum filtration. The mechanical properties of the BC/MoS2/HCNTs composite films are enhanced due to the synergistic effect of MoS2 and HCNTs embedded in the BC films. The MoS2/HCNTs binary additive (1 phr) is capable of increasing the strength and Young's modulus by 148 % and 333 %, respectively, relative to the BC films. The cell cytotoxicity of the BC/MoS2/HCNTs films was assessed using an MTT assay. The composite films are biocompatible with a cell viability of L929 fibroblast cells >70 %, coupled with observations of direct cell attachment on the films. The composite films also exhibited good performance in absorbing and releasing gentamicin antibiotics to inhibit the growth of Escherichia coli and Staphylococcus aureus. The BC/MoS2/HCNTs films are thus potential BC-based candidates as biocompatible robust antibiotic carriers.


Assuntos
Celulose , Nanotubos de Carbono , Celulose/farmacologia , Portadores de Fármacos/farmacologia , Molibdênio/farmacologia , Antibacterianos/farmacologia , Escherichia coli
2.
Polymers (Basel) ; 15(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299357

RESUMO

The wound-healing process can be disrupted at any stage due to various internal and external factors. The inflammatory stage of the process plays a vital role in determining the outcome of the wound. Prolonged inflammation due to bacterial infection can lead to tissue damage, slow healing, and complications. Wound dressings made using materials such as poly (vinyl alcohol) (PVA), chitosan (CS), and poly (ethylene glycol) (PEG) with Mangifera extract (ME) added can help reduce infection and inflammation, creating a conducive environment for faster healing. However, creating the electrospun membrane is challenging due to balancing various forces such as rheological behavior, conductivity, and surface tension. To improve the electrospinnability of the polymer solution, an atmospheric pressure plasma jet can induce chemistry in the solution and increase the polarity of the solvent. Thus, this research aims to investigate the effect of plasma treatment on PVA, CS, and PEG polymer solutions and fabricate ME wound dressing via electrospinning. The results indicated that increasing plasma treatment time increased the viscosity of the polymer solution, from 269 mPa∙to 331 mPa∙s after 60 min, and led to an increase in conductivity from 298 mS/cm to 330 mS/cm and an increase in nanofiber diameter from 90 ± 40 nm to 109 ± 49 nm. Incorporating 1% mangiferin extract into an electrospun nanofiber membrane has been found to increase the inhibition rates of Escherichia coli and Staphylococcus aureus by 29.2% and 61.2%, respectively. Additionally, the fiber diameter decreases when compared with the electrospun nanofiber membrane without ME. Our findings demonstrate that electrospun nanofiber membrane with ME has anti-infective properties and can promote faster wound healing.

3.
Int J Biol Macromol ; 244: 125390, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37330098

RESUMO

With the increasing water consumption, water evaporators have been investigated for clean water production. Herein, the fabrication of electrospun composite membrane evaporators based on ethyl cellulose (EC), with the incorporation of light-absorption enhancers 2D MoS2 and helical carbon nanotubes, for steam generation and solar desalination is described. Under natural sunlight, the maximum water evaporation rate was 2.02 kg m-2 h-1 with an evaporation efficiency of 93.2 % (1 sun) and reached 2.42 kg m-2 h-1 at 12:00 pm (1.35 sun). The composite membranes demonstrated self-floating on the air-water interface and minimal accumulation of superficial salt during the desalination process due to the hydrophobic character of EC. For concentrated saline water (21 wt% NaCl), the composite membranes maintained a relatively high evaporation rate of up to ~79 % compared to the freshwater evaporation rate. The composite membranes are robust due to the thermomechanical stability of the polymer even while operating under steam-generating conditions. Over repeated use, they exhibited excellent reusability with a relative water mass change of >90 % compared to the first evaporation cycle. Moreover, desalination of artificial seawater produced a lower cation concentration (~3-5 orders of magnitude) and thereby yielded potable water, indicating the potential for solar-driven freshwater generation.


Assuntos
Molibdênio , Nanotubos de Carbono , Vapor , Luz Solar , Cloreto de Sódio
4.
Int J Biol Macromol ; 242(Pt 1): 124726, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172702

RESUMO

Plastic waste is one cause of climate change. To solve this problem, packaging films are increasingly produced from biodegradable polymers. Eco-friendly carboxymethyl cellulose and its blends have been developed for such a solution. Herein, a unique strategy is demonstrated to improve the mechanical and barrier properties of carboxymethyl cellulose/poly(vinyl alcohol) (CMC/PVA) blended films for the packaging of nonfood dried products. The blended films were impregnated with buckypapers containing different combinations of multiwalled carbon nanotubes, two-dimensional molybdenum disulfide (2D MoS2) nanoplatelets, and helical carbon nanotubes (HCNTs). Compared to the blend, the polymer composite films exhibit significant increases in tensile strength (~105 %, from 25.53 to 52.41 MPa), Young's modulus (~297 %, from 155.48 to 617.48 MPa), and toughness (~46 %, from 6.69 to 9.75 MJ m-3). Polymer composite films containing HCNTs in buckypapers offer the highest toughness. For barrier properties, the polymer composite films are opaque. The water vapor transmission rate of the blended films decreases (~52 %, from 13.09 to 6.25 g h-1 m-2). Moreover, the maximum thermal-degradation temperature of the blend rises from 296 to 301 °C, especially for the polymer composite films with buckypapers containing MoS2 nanosheets that contribute to the barrier effect for both water vapor and thermal-decomposition gas molecules.


Assuntos
Nanotubos de Carbono , Álcool de Polivinil , Carboximetilcelulose Sódica , Vapor , Molibdênio , Celulose , Resistência à Tração
5.
Micromachines (Basel) ; 13(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296114

RESUMO

Rapid release and diminished stability are two of the limitations associated with the growth factors that are essentially used in dental applications. These growth factors are employed to enhance the quality and quantity of tissue or bone matter during regeneration. Therefore, drug delivery devices and systems have been developed to address these limitations. In this study, bovine serum albumin (BSA), as a representative growth factor, was successfully sustained by encapsulation with the medium-absorbable copolymer, poly(L-lactide-co-glycolide) (PLG) 70:30% mol, via the multiple emulsion method. Different PLG, PVA, and BSA concentrations were used to investigate their effects on the BSA encapsulation efficiency. The suitable ratios leading to a better characterization of microparticles and a higher encapsulation efficiency in producing encapsulated PLG microparticles were 8% (w/v) of PLG, 0.25% (w/v) of PVA, and 8% (w/v) of BSA. Furthermore, an in vitro release study revealed a bursting release of BSA from the encapsulated PLG microsphere in the early phase of development. Subsequently, a gradual release was observed over a period of eight weeks. Furthermore, to encapsulate LL-37, different proteins were used in conjunction with PLG under identical conditions with regard to the loading efficiency and morphology, thereby indicating high variations and poor reproducibility. In conclusion, the encapsulated PLG microparticles could effectively protect the protein during encapsulation and could facilitate sustainable protein release over a period of 60 days. Importantly, an optimal method must be employed in order to achieve a high degree of encapsulation efficiency for all of the protein or growth factors. Accordingly, the outcomes of this study will be useful in the manufacture of drug delivery devices that require medium-sustained release growth factors, particularly in dental treatments.

6.
Biomacromolecules ; 23(11): 4532-4546, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36169096

RESUMO

The efficiency of nerve guide conduits (NGCs) in repairing peripheral nerve injury is not high enough yet to be a substitute for autografts and is still insufficient for clinical use. To improve this efficiency, 3D electrospun scaffolds (3D/E) of poly(l-lactide-co-ε-caprolactone) (PLCL) and poly(l-lactide-co-glycolide) (PLGA) were designed and fabricated by the combination of 3D printing and electrospinning techniques, resulting in an ideal porous architecture for NGCs. Polypyrrole (PPy) was deposited on PLCL and PLGA scaffolds to enhance biocompatibility for nerve recovery. The designed pore architecture of these "PLCL-3D/E" and "PLGA-3D/E" scaffolds exhibited a combination of nano- and microscale structures. The mean pore size of PLCL-3D/E and PLGA-3D/E scaffolds were 289 ± 79 and 287 ± 95 nm, respectively, which meets the required pore size for NGCs. Furthermore, the addition of PPy on the surfaces of both PLCL-3D/E (PLCL-3D/E/PPy) and PLGA-3D/E (PLGA-3D/E/PPy) led to an increase in their hydrophilicity, conductivity, and noncytotoxicity compared to noncoated PPy scaffolds. Both PLCL-3D/E/PPy and PLGA-3D/E/PPy showed conductivity maintained at 12.40 ± 0.12 and 10.50 ± 0.08 Scm-1 for up to 15 and 9 weeks, respectively, which are adequate for the electroconduction of neuron cells. Notably, the PLGA-3D/E/PPy scaffold showed superior cytocompatibility when compared with PLCL-3D/E/PPy, as evident via the viability assay, proliferation, and attachment of L929 and SC cells. Furthermore, analysis of cell health through membrane leakage and apoptotic indices showed that the 3D/E/PPy scaffolds displayed significant decreases in membrane leakage and reductions in necrotic tissue. Our finding suggests that these 3D/E/PPy scaffolds have a favorable design architecture and biocompatibility with potential for use in peripheral nerve regeneration applications.


Assuntos
Polímeros , Pirróis , Engenharia Tecidual/métodos , Poliésteres , Impressão Tridimensional , Alicerces Teciduais
7.
ACS Omega ; 6(43): 28788-28803, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34746572

RESUMO

In this study, a medical-grade poly(l-lactide-co-ε-caprolactone) (PLC) copolymer with a monomer ratio of l-lactide (L) to ε-caprolactone (C) of 70:30 mol % for use as an absorbable surgical suture was synthesized via ring-opening polymerization (ROP) using a novel soluble liquid tin(II) n-butoxide (Sn(OnC4H9)2) as an initiator. In fiber fabrication, the process included copolymer melt extrusion with a minimal draw followed by sequential controlled hot-drawing and fixed-annealing steps to obtain oriented semicrystalline fibers with improved mechanical strength. For healing enhancement, the fiber was dip-coated with "levofloxacin" by adding the drug into a solution mixture of acetone, poly(ε-caprolactone) (PCL), and calcium stearate (CaSt) in the ratio of acetone/PCL/CaSt = 100:1% w/v:0.1% w/v. The tensile strength of the coated fiber was found to be increased to ∼400 MPa, which is comparable with that of commercial polydioxanone (PDS II) of a similar size. Finally, the efficiency of the drug-coated fiber regarding its controlled drug release and antimicrobial activity was investigated, and the results showed that the coated fiber was able to release the drug continuously for as long as 30 days. For fiber antimicrobial activity, it was found that a concentration of 1 mg/mL was sufficient to inhibit the growth of Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Pseudomonas aeruginosa, giving a clear inhibition zone range of 20-24 mm for 90 days. Cytotoxicity testing of the drug-coated fibers showed a %viability of more than 70%, indicating that they were nontoxic.

8.
Stem Cells Int ; 2016: 5309484, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839562

RESUMO

Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35-40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N-H, and C-N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.

9.
Biomed Res Int ; 2014: 741408, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24900983

RESUMO

Electrospinning can produce nanofibrous scaffolds that mimic the architecture of the extracellular matrix and support cell attachment for tissue engineering applications. In this study, fibrous membranes of polyhydroxybutyrate (PHB) with various loadings of poly(L-lactide-co-ε-caprolactone) (PLCL) were successfully prepared by electrospinning. In comparison to PLCL scaffolds, PLCL blends with PHB exhibited more irregular fibre diameter distributions and higher average fibre diameters but there were no significant differences in pore size. PLCL/PHB scaffolds were more hydrophilic (<120°) with significantly reduced tensile strength (ca. 1 MPa) compared to PLCL scaffolds (150.9 ± 2.8° and 5.8 ± 0.5 MPa). Increasing PLCL loading in PHB/PLCL scaffolds significantly increased the extension at break, (4-6-fold). PLCL/PHB scaffolds supported greater adhesion and proliferation of olfactory ensheathing cells (OECs) than those exhibiting asynchronous growth on culture plates. Mitochondrial activity of cells cultivated on the electrospun blended membranes was enhanced compared to those grown on PLCL and PHB scaffolds (212, 179, and 153%, resp.). Analysis showed that PLCL/PHB nanofibrous membranes promoted cell cycle progression and reduced the onset of necrosis. Thus, electrospun PLCL/PHB composites promoted adhesion and proliferation of OECs when compared to their individual PLCL and PHB components suggesting potential in the repair and engineering of nerve tissue.


Assuntos
Materiais Biocompatíveis/química , Hidroxibutiratos/química , Nanofibras/química , Poliésteres/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Hidroxibutiratos/farmacologia , Teste de Materiais/métodos , Camundongos , Mitocôndrias/efeitos dos fármacos , Poliésteres/farmacologia , Resistência à Tração/efeitos dos fármacos , Engenharia Tecidual/métodos
10.
J Biomater Sci Polym Ed ; 25(10): 1028-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24856087

RESUMO

In this study, for the first time, a biodegradable poly(L-lactide-co-ε-caprolactone), PLC 67:33 copolymer was developed for use as temporary scaffolds in reconstructive nerve surgery. The effect of the surface topology and pore architecture were studied on the biocompatibility for supporting the growth of human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) and human neuroblastoma cells (hNBCs) as cell models. Porous PLC membranes were prepared by electrospinning and phase immersion precipitation with particulate leaching and nonporous PLC membranes were prepared by solvent casting. From the results, the porous PLC membranes can support hWJ-MSCs and hNBCs cells better than the nonporous PLC membrane, and the interconnected pore scaffold prepared by electrospinning exhibited a more significant supporting attachment of the cells than the open pore and nonporous membranes. We can consider that these electrospun PLC membranes with 3-D interconnecting fiber networks and a high porosity warrant a potential use as nerve guides in reconstructive nerve surgery.


Assuntos
Células-Tronco Mesenquimais/citologia , Neuroblastoma/patologia , Poliésteres/química , Poliésteres/farmacologia , Alicerces Teciduais/química , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Teste de Materiais , Membranas Artificiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Poliésteres/síntese química , Poliésteres/toxicidade , Porosidade , Solventes/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...