Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014203

RESUMO

A system enabling the expression of therapeutic proteins specifically in diseased cells would be transformative, providing greatly increased safety and the possibility of pre-emptive treatment. Here we describe "TDP-REG", a precision medicine approach primarily for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which exploits the cryptic splicing events that occur in cells with TDP-43 loss-of-function (TDP-LOF) in order to drive expression specifically in diseased cells. In addition to modifying existing cryptic exons for this purpose, we develop a deep-learning-powered algorithm for generating customisable cryptic splicing events, which can be embedded within virtually any coding sequence. By placing part of a coding sequence within a novel cryptic exon, we tightly couple protein expression to TDP-LOF. Protein expression is activated by TDP-LOF in vitro and in vivo, including TDP-LOF induced by cytoplasmic TDP-43 aggregation. In addition to generating a variety of fluorescent and luminescent reporters, we use this system to perform TDP-LOF-dependent genomic prime editing to ablate the UNC13A cryptic donor splice site. Furthermore, we design a panel of tightly gated, autoregulating vectors encoding a TDP-43/Raver1 fusion protein, which rescue key pathological cryptic splicing events. In summary, we combine deep-learning and rational design to create sophisticated splicing sensors, resulting in a platform that provides far safer therapeutics for neurodegeneration, potentially even enabling preemptive treatment of at-risk individuals.

2.
PLoS One ; 18(9): e0290846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656709

RESUMO

Sertoli cells support the development of sperm and the function of various somatic cells in the interstitium between the tubules. Sertoli cells regulate the function of the testicular vasculature and the development and function of the Leydig cells that produce testosterone for fertility and virility. However, the Sertoli cell-derived factors that regulate these cells are largely unknown. To define potential mechanisms by which Sertoli cells could support testicular somatic cell function, we aimed to identify Sertoli cell-enriched proteins in the testicular interstitial fluid (TIF) between the tubules. We previously resolved the proteome of TIF in mice and humans and have shown it to be a rich source of seminiferous tubule-derived proteins. In the current study, we designed bioinformatic strategies to interrogate relevant proteomic and genomic datasets to identify Sertoli cell-enriched proteins in mouse and human TIF. We analysed proteins in mouse TIF that were significantly reduced after one week of acute Sertoli cell ablation in vivo and validated which of these are likely to arise primarily from Sertoli cells based on relevant mouse testis RNASeq datasets. We used a different, but complementary, approach to identify Sertoli cell-enriched proteins in human TIF, taking advantage of high-quality human testis genomic, proteomic and immunohistochemical datasets. We identified a total of 47 and 40 Sertoli cell-enriched proteins in mouse and human TIF, respectively, including 15 proteins that are conserved in both species. Proteins with potential roles in angiogenesis, the regulation of Leydig cells or steroidogenesis, and immune cell regulation were identified. The data suggests that some of these proteins are secreted, but that Sertoli cells also deposit specific proteins into TIF via the release of extracellular vesicles. In conclusion, we have identified novel Sertoli cell-enriched proteins in TIF that are candidates for regulating somatic cell-cell communication and testis function.


Assuntos
Células de Sertoli , Testículo , Humanos , Masculino , Animais , Camundongos , Líquido Extracelular , Proteômica , Sêmen
3.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499341

RESUMO

Glucocorticoids are steroids involved in key physiological processes such as development, metabolism, inflammatory and stress responses and are mostly used exogenously as medications to treat various inflammation-based conditions. They act via the glucocorticoid receptor (GR) expressed in most cells. Exogenous glucocorticoids can negatively impact the function of the Leydig cells in the testis, leading to decreased androgen production. However, endogenous glucocorticoids are produced by the adrenal and within the testis, but whether their action on GR in Leydig cells regulates steroidogenesis is unknown. This study aimed to define the role of endogenous GR signalling in adult Leydig cells. We developed and compared two models; an inducible Cre transgene driven by expression of the Cyp17a1 steroidogenic gene (Cyp17-iCre) that depletes GR during development and a viral vector-driven Cre (AAV9-Cre) to deplete GR in adulthood. The delivery of AAV9-Cre ablated GR in adult mouse Leydig cells depleted Leydig cell GR more efficiently than the Cyp17-iCre model. Importantly, adult depletion of GR in Leydig cells caused reduced expression of luteinising hormone receptor (Lhcgr) and of steroidogenic enzymes required for normal androgen production. These findings reveal that Leydig cell GR signalling plays a physiological role in the testis and highlight that a normal balance of glucocorticoid activity in the testis is important for steroidogenesis.


Assuntos
Células Intersticiais do Testículo , Receptores de Glucocorticoides , Camundongos , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/genética , Glucocorticoides/metabolismo , Androgênios/metabolismo , Camundongos Knockout , Testículo/metabolismo , Expressão Gênica
4.
Mol Cell Endocrinol ; 544: 111556, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031431

RESUMO

Testicular Leydig cells (LCs) are the principal source of circulating testosterone in males. LC steroidogenesis maintains sexual function, fertility and general health, and is influenced by various paracrine factors. The leukemia inhibitory factor receptor (LIFR) is expressed in the testis and activated by different ligands, including leukemia inhibitory factor (LIF), produced by peritubular myoid cells. LIF can modulate LC testosterone production in vitro under certain circumstances, but the role of consolidated signalling through LIFR in adult LC function in vivo has not been established. We used a conditional Lifr allele in combination with adenoviral vectors expressing Cre-recombinase to generate an acute model of LC Lifr-KO in the adult mouse testis, and showed that LC Lifr is not required for short term LC survival or basal steroidogenesis. However, LIFR-signalling negatively regulates steroidogenic enzyme expression and maximal gonadotrophin-stimulated testosterone biosynthesis, expanding our understanding of the intricate regulation of LC steroidogenic function.


Assuntos
Células Intersticiais do Testículo , Testosterona , Animais , Fator Inibidor de Leucemia/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Receptores de OSM-LIF/metabolismo , Testículo/metabolismo , Testosterona/metabolismo
5.
Front Cell Dev Biol ; 9: 695546, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262907

RESUMO

Leydig cells (LC) are the main testicular androgen-producing cells. In eutherian mammals, two types of LCs emerge successively during testicular development, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs). Both display significant differences in androgen production and regulation. Using bulk RNA sequencing, we compared the transcriptomes of both LC populations to characterize their specific transcriptional and functional features. Despite similar transcriptomic profiles, a quarter of the genes show significant variations in expression between FLCs and ALCs. Non-transcriptional events, such as alternative splicing was also observed, including a high rate of intron retention in FLCs compared to ALCs. The use of single-cell RNA sequencing data also allowed the identification of nine FLC-specific genes and 50 ALC-specific genes. Expression of the corticotropin-releasing hormone 1 (Crhr1) receptor and the ACTH receptor melanocortin type 2 receptor (Mc2r) specifically in FLCs suggests a dual regulation of steroidogenesis. The androstenedione synthesis by FLCs is stimulated by luteinizing hormone (LH), corticotrophin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH) whereas the testosterone synthesis by ALCs is dependent exclusively on LH. Overall, our study provides a useful database to explore LC development and functions.

6.
Andrology ; 9(1): 460-473, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32996275

RESUMO

BACKGROUND: Despite the increasing popularity of deliverable transgenics, a robust and fully validated method for targeting Leydig cells, capable of delivering long-term transgene expression, is yet to be defined. OBJECTIVES: We compared three viral vector systems in terms of their cell targeting specificity, longevity of gene expression and impact on targeted cell types when delivered to the interstitial compartment of the mouse testis. MATERIALS & METHODS: We delivered lentiviral, adenoviral and adeno-associated (AAV) viral particles to the interstitial compartment of adult mouse testis. Immunolocalization and stereology were performed to characterize ability of vectors to target and deliver transgenes to Leydig cells. RESULTS: Viral vectors utilized in this study were found to specifically target Leydig cells when delivered interstitially. Transgene expression in lentiviral-targeted Leydig cells was detected for 7 days post-injection before Leydig cells underwent apoptosis. Adenoviral-delivered transgene expression was detected for 10 days post-injection with no evidence of targeted cell apoptosis. We found serotype differences in AAV injected testis with AAV serotype 9 targeting a significant proportion of Leydig cells. Targeting efficiency increased to an average of 59.63% (and a maximum of 80%) of Leydig cells with the addition of neuraminidase during injection. In AAV injected testis sections, transgene expression was detectable for up to 50 days post-injection. DISCUSSION & CONCLUSION: Lentivirus, Adenovirus and Adeno-Associated virus delivery to the testis resulted in key variances in targeting efficiency of Leydig cells and in longevity of transgene expression, but identified AAV9 + Neuraminidase as an efficient vector system for transgene delivery and long-term expression. Simple viral delivery procedures and the commercial availability of viral vectors suggests AAV9 + Neuraminidase will be of significant utility to researchers investigating the genetics underpinning Leydig cell function and holds promise to inform the development of novel therapeutics for the treatment of male reproductive disorders.


Assuntos
Dependovirus , Técnicas de Transferência de Genes , Vetores Genéticos , Células Intersticiais do Testículo , Adenoviridae , Animais , Lentivirus , Masculino , Camundongos
7.
FASEB J ; 34(8): 10373-10386, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557858

RESUMO

Male development, fertility, and lifelong health are all androgen-dependent. Approximately 95% of circulating testosterone is synthesized by the testis and the final step in this canonical pathway is controlled by the activity of the hydroxysteroid-dehydrogenase-17-beta-3 (HSD17B3). To determine the role of HSD17B3 in testosterone production and androgenization during male development and function we have characterized a mouse model lacking HSD17B3. The data reveal that developmental masculinization and fertility are normal in mutant males. Ablation of HSD17B3 inhibits hyperstimulation of testosterone production by hCG, although basal testosterone levels are maintained despite the absence of HSD17B3. Reintroduction of HSD17B3 via gene-delivery to Sertoli cells in adulthood partially rescues the adult phenotype, showing that, as in development, different cell-types in the testis are able to work together to produce testosterone. Together, these data show that HS17B3 acts as a rate-limiting-step for the maximum level of testosterone production by the testis but does not control basal testosterone production. Measurement of other enzymes able to convert androstenedione to testosterone identifies HSD17B12 as a candidate enzyme capable of driving basal testosterone production in the testis. Together, these findings expand our understanding of testosterone production in males.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Testosterona/metabolismo , Androgênios/metabolismo , Animais , Feminino , Fertilidade/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Sci Rep ; 8(1): 11532, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068994

RESUMO

Leukemia inhibitory factor (LIF), a pleiotropic cytokine belonging to the interleukin-6 family, is most often noted for its role in maintaining the balance between stem cell proliferation and differentiation. In rodents, LIF is expressed in both the fetal and adult testis; with the peritubular myoid (PTM) cells thought to be the main site of production. Given their anatomical location, LIF produced by PTM cells may act both on intratubular and interstitial cells to influence spermatogenesis and steroidogenesis respectively. Indeed, the leukemia inhibitory factor receptor (LIFR) is expressed in germ cells, Sertoli cells, Leydig cells, PTM cells and testicular macrophages, suggesting that LIF signalling via LIFR may be a key paracrine regulator of testicular function. However, a precise role(s) for testicular LIFR-signalling in vivo has not been established. To this end, we generated and characterised the testicular phenotype of mice lacking LIFR either in germ cells, Sertoli cells or both, to identify a role for LIFR-signalling in testicular development/function. Our analyses reveal that LIFR is dispensable in germ cells for normal spermatogenesis. However, Sertoli cell LIFR ablation results in a degenerative phenotype, characterised by abnormal germ cell loss, sperm stasis, seminiferous tubule distention and subsequent atrophy of the seminiferous tubules.


Assuntos
Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Testículo/fisiologia , Animais , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/deficiência , Masculino , Camundongos , Camundongos Knockout
9.
Methods Mol Biol ; 1748: 203-228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29453574

RESUMO

Testis development and function is regulated by intricate cell-cell cross talk. Characterization of the mechanisms underpinning this has been derived through a wide variety of approaches including pharmacological manipulation, transgenics, and cell-specific ablation of populations. The removal of all or a proportion of a specific cell type has been achieved through a variety of approaches. In this paper, we detail a combined transgenic and pharmacological approach to ablate the Sertoli or germ cell populations using diphtheria toxin in mice. We describe the key steps in generation, validation, and use of the models and also describe the caveats and cautions necessary. We also provide a detailed description of the methodology applied to characterize testis development and function in models of postnatal Sertoli or germ cell ablation.


Assuntos
Toxina Diftérica/farmacologia , Células Germinativas/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/fisiologia , Venenos/farmacologia , Células de Sertoli/metabolismo , Animais , Células Cultivadas , Células Germinativas/citologia , Células Germinativas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Espermatogênese
10.
Mol Cell Endocrinol ; 468: 81-94, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29191697

RESUMO

Male infertility and hypogonadism are clinically prevalent conditions with a high socioeconomic burden and are both linked to an increased risk in cardiovascular-metabolic diseases and earlier mortality. Therefore, there is an urgent need to better understand the causes and develop new treatments for these conditions that affect millions of men. The accelerating advancement in gene editing and delivery technologies promises improvements in both diagnosis as well as affording the opportunity to develop bespoke treatment options which would both prove beneficial for the millions of individuals afflicted with these reproductive disorders. In this review, we summarise the systems developed and utilised for the delivery of gene therapy and discuss how each of these systems could be applied for the development of a gene therapy system in the testis and how they could be of use for the future diagnosis and repair of common male reproductive disorders.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Testículo/metabolismo , Transgenes , Animais , Humanos , Masculino
11.
Endocrinology ; 158(9): 2955-2969, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911170

RESUMO

Sertoli cells regulate differentiation and development of the testis and are essential for maintaining adult testis function. To model the effects of dysregulating Sertoli cell number during development or aging, we have used acute diphtheria toxin-mediated cell ablation to reduce Sertoli cell population size. Results show that the size of the Sertoli cell population that forms during development determines the number of germ cells and Leydig cells that will be present in the adult testis. Similarly, the number of germ cells and Leydig cells that can be maintained in the adult depends directly on the size of the adult Sertoli cell population. Finally, we have used linear modeling to generate predictive models of testis cell composition during development and in the adult based on the size of the Sertoli cell population. This study shows that at all ages the size of the Sertoli cell population is predictive of resulting testicular cell composition. A reduction in Sertoli cell number/proliferation at any age will therefore lead to a proportional decrease in germ cell and Leydig cell numbers, with likely consequential effects on fertility and health.


Assuntos
Células Germinativas/citologia , Células Intersticiais do Testículo/citologia , Células de Sertoli/citologia , Testículo/citologia , Envelhecimento/fisiologia , Animais , Contagem de Células , Diferenciação Celular , Toxina Diftérica/genética , Genes Transgênicos Suicidas , Células Germinativas/fisiologia , Crescimento e Desenvolvimento/fisiologia , Células Intersticiais do Testículo/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Células de Sertoli/fisiologia , Maturidade Sexual/fisiologia , Espermatogênese/fisiologia , Espermatozoides/citologia , Espermatozoides/fisiologia , Testículo/metabolismo
12.
Sci Rep ; 7(1): 8991, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827578

RESUMO

The tamoxifen-inducible Cre system is a popular transgenic method for controlling the induction of recombination by Cre at a specific time and in a specific cell type. However, tamoxifen is not an inert inducer of recombination, but an established endocrine disruptor with mixed agonist/antagonist activity acting via endogenous estrogen receptors. Such potentially confounding effects should be controlled for, but >40% of publications that have used tamoxifen to generate conditional knockouts have not reported even the minimum appropriate controls. To highlight the importance of this issue, the present study investigated the long-term impacts of different doses of a single systemic tamoxifen injection on the testis and the wider endocrine system. We found that a single dose of tamoxifen less than 10% of the mean dose used for recombination induction, caused adverse effects to the testis and to the reproductive endocrine system that persisted long-term. These data raise significant concerns about the widespread use of tamoxifen induction of recombination, and highlight the importance of including appropriate controls in all pathophysiological studies using this means of induction.


Assuntos
Antagonistas de Estrogênios/administração & dosagem , Antagonistas de Estrogênios/efeitos adversos , Efeitos Adversos de Longa Duração , Tamoxifeno/administração & dosagem , Tamoxifeno/efeitos adversos , Testículo/efeitos dos fármacos , Administração Intravenosa , Animais , Histocitoquímica , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Testículo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...