Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065135

RESUMO

The Streaked Optical Pyrometer (SOP) is a visible diagnostic widely used to study the warm dense matter regime at high energy laser facilities, gas guns, or ion accelerators. It is usually coupled with a Velocity Interferometer System for Any Reflector (VISAR) diagnostic for simultaneous shock wave velocity, reflectivity, and temperature measurements to study the Equation of State (EOS) of materials. While VISAR is a well-mastered technology that provides velocity measurements with low relative uncertainties (close to percent), SOP diagnostics still suffer from high imprecision. In this article, we present a new calibration method in order to obtain absolute temperature measurements with reduced uncertainties. This approach is based on a novel light source: a Ce:YAG luminescent concentrator pumped by LEDs. This device produces enough optical power for calibration at the nanosecond sweep duration of the streak camera. As a demonstration, it has first been installed at the LULI facility and tested on quartz samples shocked at temperatures above 4000 K.

2.
Rev Sci Instrum ; 83(10): 10E533, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23127039

RESUMO

Multilayer mirrors with enhanced bandwidth were developed with special performances for dense plasma diagnostics and mainly for high spatial resolution x-ray imaging. The multilayer coatings are designed to provide broadband x-ray reflectance at low grazing incidence angles. They are deposited onto toroidal mirror substrates. Our research is directed at the development of non-periodic (depth graded) W∕Si multilayer specifically designed for use in the 1 to 30 keV photon energy band. First, we present a study for a 5 to 22 keV x-ray spectral window at 0.45° grazing angle. The goal is to obtain a high and constant reflectivity. Second, we have modeled a broadband mirror coating for harder x-rays in the range from 10 to 30 keV, with a non-periodic structure containing 300 W∕SiC layers with periods in the range from 0.8 to 4 nm, designed for 0.35° grazing incidence angle.

3.
Opt Express ; 20(18): 20028-42, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037056

RESUMO

CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques.


Assuntos
Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Lasers , Semicondutores , Transdutores , Desenho de Equipamento , Falha de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Rev Sci Instrum ; 81(10): 10E509, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034037

RESUMO

This imaging system aims at recording images of the core size and shape of an imploding deuterium-tritium (DT) microballoon on LMJ inertial confinement fusion (ICF) experiments. Image acquisition is difficult due to the harsh surrounding created by the fusion reaction, which affects system specifications. This one is made of a scintillator, an optical relay, and a CCD camera shielded from the surrounding. The system was tested on different facilities at CEA/DIF, where a spatial resolution of 120 µm was achieved and gamma dose up to 20 rad effects were measured. Setup and performed test are described.

5.
Rev Sci Instrum ; 79(10): 10F301, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044614

RESUMO

The diagnostic designs for the Laser Megajoule (LMJ) will require components to operate in environments far more severe than those encountered in present facilities. This harsh environment will be induced by fluxes of neutrons, gamma rays, energetic ions, electromagnetic radiations, and, in some cases, debris and shrapnel, at levels several orders of magnitude higher than those experienced today on existing facilities. The lessons learned about the vulnerabilities of present diagnostic parts fielded mainly on OMEGA for many years, have been very useful guide for the design of future LMJ diagnostics. The present and future LMJ diagnostic designs including this vulnerability approach and their main mitigation techniques will be presented together with the main characteristics of the LMJ facility that provide for diagnostic protection.

6.
Phys Rev Lett ; 94(2): 025003, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15698183

RESUMO

An electron beam from a laser-plasma accelerator is converted into a gamma-ray source using bremsstrahlung radiation in a dense material. The gamma-ray beam has a pointlike source size because it is generated by a high quality electron beam with a small source size and a low divergence. Using this gamma-ray source, the radiography of complex and dense objects with submillimeter resolution is performed. It is the first evidence of a gamma-ray source size of a few hundreds micrometers produced with laser-driven accelerators. This size is consistent with results from Monte Carlo simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...