Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 611, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696836

RESUMO

A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events. The globally downscaled data are available at the Centre for Environmental Data Analysis ( https://doi.org/10.5285/c107618f1db34801bb88a1e927b82317 ) for the historical (1981-2014) and future (2015-2100) periods at 0.25° resolution and at daily time step across three Shared Socioeconomic Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing future changes and variability in climate and for driving high-resolution impact assessment models.

2.
Sci Total Environ ; 860: 160363, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36423834

RESUMO

Mass urbanisation and intensive agricultural development across river deltas have driven ecosystem degradation, impacting deltaic socio-ecological systems and reducing their resilience to climate change. Assessments of the drivers of these changes have so far been focused on human activity on the subaerial delta plains. However, the fragile nature of deltaic ecosystems and the need for biodiversity conservation on a global scale require more accurate quantification of the footprint of anthropogenic activity across delta waterways. To address this need, we investigated the potential of deep learning and high spatiotemporal resolution satellite imagery to identify river vessels, using the Vietnamese Mekong Delta (VMD) as a focus area. We trained the Faster R-CNN Resnet101 model to detect two classes of objects: (i) vessels and (ii) clusters of vessels, and achieved high detection accuracies for both classes (f-score = 0.84-0.85). The model was subsequently applied to available PlanetScope imagery across 2018-2021; the resultant detections were used to generate monthly, seasonal and annual products mapping the riverine activity, termed here the Human Waterway Footprint (HWF), with which we showed how waterborne activity has increased in the VMD (from approx. 1650 active vessels in 2018 to 2070 in 2021 - a 25 % increase). Whilst HWF values correlated well with population density estimates (R2 = 0.59-0.61, p < 0.001), many riverine activity hotspots were located away from population centres and varied spatially across the investigated period, highlighting that more detailed information is needed to fully evaluate the extent, and type, of human footprint on waterways. High spatiotemporal resolution satellite imagery in combination with deep learning methods offers great promise for such monitoring, which can subsequently enable local and regional assessment of environmental impacts of anthropogenic activities on delta ecosystems around the globe.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Humanos , Tecnologia de Sensoriamento Remoto/métodos , Biodiversidade , Rios , Vietnã , Monitoramento Ambiental/métodos
3.
Sci Total Environ ; 829: 154547, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35302026

RESUMO

The Ganges-Brahmaputra-Meghna (GBM) delta is one of the world's largest deltas. It is currently experiencing high rates of relative sea-level rise of about 5 mm/year, reflecting anthropogenic climate change and land subsidence. This is expected to accelerate further through the 21st Century, so there are concerns that the GBM delta will be progressively submerged. In this context, a core question is: can sedimentation on the delta surface maintain its elevation relative to sea level? This research seeks to answer this question by applying a two-dimensional flow and morphological model which is capable of handling dynamic interactions between the river and floodplain systems and simulating floodplain sedimentation under different flow-sediment regimes and anthropogenic interventions. We find that across a range of flood frequencies and adaptation scenarios (including the natural polder-free state), the retained volume of sediment varies between 22% and 50% of the corresponding sediment input. This translates to average rates of sedimentation on the delta surface of 5.5 mm/yr to 7.5 mm/yr. Hence, under present conditions, sedimentation associated with quasi-natural conditions can exceed current rates of relative sea-level rise and potentially create new land mass. These findings highlight that encouraging quasi-natural conditions through the widespread application of active sediment management measures has the potential to promote more sustainable outcomes for the GBM delta. Practical measures to promote include tidal river management, and appropriate combinations of cross-dams, bandal-like structures, and dredging.


Assuntos
Mudança Climática , Rios , Inundações , Rios/química , Elevação do Nível do Mar
4.
Sci Total Environ ; 755(Pt 1): 142468, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33032131

RESUMO

The livelihoods of millions of people living in the world's deltas are deeply interconnected with the sediment dynamics of these deltas. In particular a sustainable supply of fluvial sediments from upstream is critical for ensuring the fertility of delta soils and for promoting sediment deposition that can offset rising sea levels. Yet, in many large river catchments this supply of sediment is being threatened by the planned construction of large dams. In this study, we apply the INCA hydrological and sediment model to the Mekong River catchment in South East Asia. The aim is to assess the impact of several large dams (both existing and planned) on the suspended sediment fluxes of the river. We force the INCA model with a climate model to assess the interplay of changing climate and sediment trapping caused by dam construction. The results show that historical sediment flux declines are mostly caused by dams built in PR China and that sediment trapping will increase in the future due to the construction of new dams in PDR Lao and Cambodia. If all dams that are currently planned for the next two decades are built, they will induce a decline of suspended sediment flux of 50% (47-53% 90% confidence interval (90%CI)) compared to current levels (99 Mt/year at the delta apex), with potentially damaging consequences for local livelihoods and ecosystems.

5.
PLoS One ; 15(2): e0229306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32101590

RESUMO

The time-averaged and instantaneous flow velocity structures of flood waters are not well understood for irregular surfaces such as are created by the presence of roots and fallen branches on forested floodplains. Natural flow structures commonly depart systematically from those described for idealised roughness elements, and an important knowledge gap exists surrounding the effects of natural flow structures on vertical exchanges of fluid and momentum. An improved understanding of the flow structure is required to model flows over forested floodplains more accurately, and to distinguish their dynamics from non-vegetated floodplains or indeed floodplains with other vegetation types, such as reed or grass. Here we present a quantification of the three-dimensional structure of mean flow velocity and turbulence as measured under controlled conditions in an experimental flume using a physical reproduction of a patch of forested floodplain. The results conform in part to existing models of local flow structure over simple roughness elements in aspects such as flow separation downstream of protruding roots, flow reattachment, and the lowering of the velocity maximum further downstream. However, the irregular shape of the surface of the floodplain with exposed roots causes the three-dimensional flow structure to deviate from that anticipated based on previous studies of flows over idealised two-dimensional roughness elements. The results emphasise varied effects of inheritance of flow structures that are generated upstream-the local response of the flow to similar obstacles depends on their spatial organisation and larger-scale context. Key differences from idealised models include the absence of a fully-developed flow at any location in the test section, and various interactions of flow structures such as a reduction of flow separation due to cross-stream circulation and the diversion of the flow over and around the irregular shapes of the roots.


Assuntos
Inundações , Florestas , Laboratórios/estatística & dados numéricos , Raízes de Plantas/fisiologia , Movimentos da Água , Conservação dos Recursos Naturais
6.
One Earth ; 2(6): 510-514, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34173521

RESUMO

The world's great rivers are threatened by a range of anthropogenic stresses-of which climate change is just one-that decrease resilience and increase vulnerability to extreme events. Future governance must recognize both the rate of change associated with these stressors and the potential for extreme events to transgress sustainability thresholds.

7.
Sci Total Environ ; 643: 1054-1064, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189522

RESUMO

The physical sustainability of deltaic environments is very much dependent on the volume of water and sediment coming from upstream and the way these fluxes recirculate within the delta system. Based on several past studies, the combined mean annual sediment load of the Ganges-Brahmaputra-Meghna (GBM) systems has previously been estimated to vary from 1.0 to 2.4 BT/year which can be separated into components flowing from the Ganges (260 to 680 MT/year) and Brahmaputra (390 to 1160 MT/year). Due to very limited data and small contribution of the Meghna system (6-12 MT/year) to the total sediment flux of the GBM system, the data of the Meghna is not considered in the analysis assuming the sediment flux from GB system as the sediment flux of GBM. However, in this paper our analysis of sediment concentration data (1960-2008) collected by Bangladesh Water Development Board shows that the sediment flux is much lower: 150 to 590 MT/year for the Ganges versus 135 to 615 MT/year for the Brahmaputra, with an average total flux around 500 MT/year. Moreover, the new analysis provides a clear indication that the combined sediment flux delivered through these two major river systems is following a declining trend. In most of the planning documents in Bangladesh, the total sediment flux is assumed as a constant value of around 1 billion tons, while the present study indicates that the true value may be around 50% lower than this (with an average decreasing trend of around 10 MT/year).

8.
Sci Total Environ ; 642: 105-116, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29894869

RESUMO

Regular sediment inputs are required for deltas to maintain their surface elevation relative to sea level, which is important for avoiding salinization, erosion, and flooding. However, fluvial sediment inputs to deltas are being threatened by changes in upstream catchments due to climate and land use change and, particularly, reservoir construction. In this research, the global hydrogeomorphic model WBMsed is used to project and contrast 'pristine' (no anthropogenic impacts) and 'recent' historical fluvial sediment delivery to the Ganges-Brahmaputra-Meghna, Mahanadi, and Volta deltas. Additionally, 12 potential future scenarios of environmental change comprising combinations of four climate and three socioeconomic pathways, combined with a single construction timeline for future reservoirs, were simulated and analysed. The simulations of the Ganges-Brahmaputra-Meghna delta showed a large decrease in sediment flux over time, regardless of future scenario, from 669 Mt/a in a 'pristine' world, through 566 Mt/a in the 'recent' past, to 79-92 Mt/a by the end of the 21st century across the scenarios (total average decline of 88%). In contrast, for the Mahanadi delta the simulated sediment delivery increased between the 'pristine' and 'recent' past from 23 Mt/a to 40 Mt/a (+77%), and then decreased to 7-25 Mt/a by the end of the 21st century. The Volta delta shows a large decrease in sediment delivery historically, from 8 to 0.3 Mt/a (96%) between the 'pristine' and 'recent' past, however over the 21st century the sediment flux changes little and is predicted to vary between 0.2 and 0.4 Mt/a dependent on scenario. For the Volta delta, catchment management short of removing or re-engineering the Volta dam would have little effect, however without careful management of the upstream catchments these deltas may be unable to maintain their current elevation relative to sea level, suggesting increasing salinization, erosion, flood hazards, and adaptation demands.

9.
Nature ; 539(7628): 276-279, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27760114

RESUMO

The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.


Assuntos
Tempestades Ciclônicas/estatística & dados numéricos , Sedimentos Geológicos/análise , Chuva , Rios/química , Clima Tropical , Sudeste Asiático , Mudança Climática , Tempestades Ciclônicas/história , História do Século XX , História do Século XXI , Hidrologia
10.
Clim Change ; 137(3): 593-608, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-32355372

RESUMO

Deltas around the globe are facing a multitude of intensifying environmental change and development-linked pressures. One key concern is the reduction in the quantity of suspended sediment reaching and building floodplains. Sediment deposition provides multiple services to deltaic social-ecological systems, in particular, countering the subsidence of the delta-body, and providing plentiful nutrients. Experiencing particularly rapid change is the Vietnamese Mekong Delta (VMD). In An Giang Province an increasing number of high dyke rings, which exclude the flood and facilitate triple rice-cropping, simultaneously prevent much of the sediment load from reaching the floodplain. This paper explores the trade-offs implicit in the decision to shift from (i) doublecropping (higher sediment deposition) to (ii) triple cropping (lower sediment deposition) by asking: what is the impact of the shift on VMD farmers? Is it sustainable? And what is the significance of the associated sediment exclusion? A novel survey of An Giang rice farmers was conducted, investigating key agricultural practices, and uniquely, the farmers' estimates of annual sediment deposition depth. The survey elicits some key changes under the adapted system (ii), particularly, unsustainable trajectories in the yield to fertiliser ratio which penalise land-poor farmers. Furthermore, the value (to farmers) of the sediment contribution to agricultural fertilisation which is lost due to triple-cropping is estimated at USD 15 (±5) million annually. We argue that our growing understanding of the importance of sediment in the deltaic social-ecological system may be revealing an emergent risk; arising from conflicting long and short-term adaptation and agricultural development objectives.

11.
Environ Sci Process Impacts ; 17(9): 1587-600, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26290168

RESUMO

We employ a climate-driven hydrological water balance and sediment transport model (HydroTrend) to simulate future climate-driven sediment loads flowing into the Ganges-Brahmaputra-Meghna (GBM) mega-delta. The model was parameterised using high-quality topographic data and forced with daily temperature and precipitation data obtained from downscaled Regional Climate Model (RCM) simulations for the period 1971-2100. Three perturbed RCM model runs were selected to quantify the potential range of future climate conditions associated with the SRES A1B scenario. Fluvial sediment delivery rates to the GBM delta associated with these climate data sets are projected to increase under the influence of anthropogenic climate change, albeit with the magnitude of the increase varying across the two catchments. Of the two study basins, the Brahmaputra's fluvial sediment load is predicted to be more sensitive to future climate change. Specifically, by the middle part of the 21(st) century, our model results suggest that sediment loads increase (relative to the 1981-2000 baseline period) over a range of between 16% and 18% (depending on climate model run) for the Ganges, but by between 25% and 28% for the Brahmaputra. The simulated increase in sediment flux emanating from the two catchments further increases towards the end of the 21(st) century, reaching between 34% and 37% for the Ganges and between 52% and 60% for the Brahmaputra by the 2090s. The variability in these changes across the three climate change simulations is small compared to the changes, suggesting they represent a significant increase. The new data obtained in this study offer the first estimate of whether and how anthropogenic climate change may affect the delivery of fluvial sediment to the GBM delta, informing assessments of the future sustainability and resilience of one of the world's most vulnerable mega-deltas. Specifically, such significant increases in future sediment loads could increase the resilience of the delta to sea-level rise by giving greater potential for vertical accretion. However, these increased sediment fluxes may not be realised due to uncertainties in the monsoon related response to climate change or other human-induced changes in the catchment: this is a subject for further research.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Poluição da Água/estatística & dados numéricos , Índia , Modelos Teóricos , Rios , Temperatura , Poluição da Água/análise
12.
Water Resour Res ; 49(4): 2146-2163, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23926362

RESUMO

We evaluate links between climate and simulated river bank erosion for one of the world's largest rivers, the Mekong. We employ a process-based model to reconstruct multidecadal time series of bank erosion at study sites within the Mekong's two main hydrological response zones, defining a new parameter, accumulated excess runoff (AER), pertinent to bank erosion. We employ a hydrological model to isolate how snowmelt, tropical storms and monsoon precipitation each contribute to AER and thus modeled bank erosion. Our results show that melt (23.9% at the upstream study site, declining to 11.1% downstream) and tropical cyclones (17.5% and 26.4% at the upstream and downstream sites, respectively) both force significant fractions of bank erosion on the Mekong. We also show (i) small, but significant, declines in AER and hence assumed bank erosion during the 20th century, and; (ii) that significant correlations exist between AER and the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Of these modes of climate variability, we find that IOD events exert a greater control on simulated bank erosion than ENSO events; but the influences of both ENSO and IOD when averaged over several decades are found to be relatively weak. However, importantly, relationships between ENSO, IOD, and AER and hence inferred river bank erosion are not time invariant. Specifically, we show that there is an intense and prolonged epoch of strong coherence between ENSO and AER from the early 1980s to present, such that in recent decades derived Mekong River bank erosion has been more strongly affected by ENSO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA