Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 143(3): 800-810, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32203578

RESUMO

Amyotrophic lateral sclerosis is a fatal disease resulting from motor neuron degeneration in the cortex and spinal cord. Cortical hyperexcitability is a hallmark feature of amyotrophic lateral sclerosis and is accompanied by decreased intracortical inhibition. Using electrophysiological patch-clamp recordings, we revealed parvalbumin interneurons to be hypoactive in the late pre-symptomatic SOD1*G93A mouse model of amyotrophic lateral sclerosis. We discovered that using adeno-associated virus-mediated delivery of chemogenetic technology targeted to increase the activity of the interneurons within layer 5 of the primary motor cortex, we were able to rescue intracortical inhibition and reduce pyramidal neuron hyperexcitability. Increasing the activity of interneurons in the layer 5 of the primary motor cortex was effective in delaying the onset of amyotrophic lateral sclerosis-associated motor deficits, slowing symptom progression, preserving neuronal populations, and increasing the lifespan of SOD1*G93A mice. Taken together, this study provides novel insights into the pathogenesis and treatment of amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Interneurônios/fisiologia , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Adenoviridae , Animais , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Destreza Motora/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Superóxido Dismutase-1/genética , Transfecção
2.
Neuroscience ; 404: 130-140, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797895

RESUMO

Huntington's disease (HD) is a genetic neurodegenerative disorder of the central nervous system characterized by choreatic movements, behavioral and psychiatric disturbances and cognitive impairments. Deficits in learning and memory are often the first signs of disease onset in both HD patients and mouse models of HD and are in part regulated by the hippocampus. In the R6/2 mouse model of HD, GABAergic transmission can be excitatory in the hippocampus and restoring inhibition can rescue the associated memory deficits. In the present study we determine that hippocampal GABAergic neurotransmission in the R6/2 mouse is disrupted as early as 4 weeks of age and is accompanied by alterations in the expression of key inhibitory proteins. Specifically, spontaneous inhibitory postsynaptic currents were initially increased in frequency at 4 postnatal weeks and subsequently decreased after the mice displayed the typical R6/2 behavioral phenotype at 10 weeks of age. Symptomatic mice also exhibited a change in the probability of GABA release and changes in the basic membrane properties including neuronal excitability and input resistance. These electrophysiological changes in presymptomatic and symptomatic R6/2 mice were further accompanied by alterations in the protein expression level of pre- and postsynaptic inhibitory markers. Taken together, the present findings demonstrate profound alterations in the inhibitory neurotransmission in the hippocampus across the lifespan of the disease, including prior to neuronal degeneration, which suggests that the inhibitory hippocampal synapses may prove useful as a target for future therapeutic design.


Assuntos
Modelos Animais de Doenças , Hipocampo/fisiopatologia , Doença de Huntington/fisiopatologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/fisiologia , Transmissão Sináptica/fisiologia , Animais , Feminino , Hipocampo/patologia , Proteína Huntingtina/fisiologia , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos
3.
Proc Natl Acad Sci U S A ; 115(7): E1618-E1626, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382760

RESUMO

Huntington's disease (HD) is classically characterized as a movement disorder, however cognitive impairments precede the motor symptoms by ∼15 y. Based on proteomic and bioinformatic data linking the Huntingtin protein (Htt) and KCC2, which is required for hyperpolarizing GABAergic inhibition, and the important role of inhibition in learning and memory, we hypothesized that aberrant KCC2 function contributes to the hippocampal-associated learning and memory deficits in HD. We discovered that Htt and KCC2 interact in the hippocampi of wild-type and R6/2-HD mice, with a decrease in KCC2 expression in the hippocampus of R6/2 and YAC128 mice. The reduced expression of the Cl--extruding cotransporter KCC2 is accompanied by an increase in the Cl--importing cotransporter NKCC1, which together result in excitatory GABA in the hippocampi of HD mice. NKCC1 inhibition by the FDA-approved NKCC1 inhibitor bumetanide abolished the excitatory action of GABA and rescued the performance of R6/2 mice on hippocampal-associated behavioral tests.


Assuntos
Doença de Huntington/metabolismo , Doença de Huntington/psicologia , Transtornos da Memória/psicologia , Memória , Ácido gama-Aminobutírico/metabolismo , Animais , Bumetanida/administração & dosagem , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/genética , Simportadores/metabolismo , Cotransportadores de K e Cl-
4.
Elife ; 62017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29028184

RESUMO

KCC2 is a neuron-specific K+-Cl- cotransporter essential for establishing the Cl- gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl-. Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2.


Assuntos
Neurônios/fisiologia , Neuropeptídeos/metabolismo , Fosfoproteínas/metabolismo , Mapas de Interação de Proteínas , Simportadores/metabolismo , Sinapses/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Encéfalo/citologia , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Proteômica , Cotransportadores de K e Cl-
5.
J Biol Chem ; 292(15): 6190-6201, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28235805

RESUMO

Synaptic inhibition depends on a transmembrane gradient of chloride, which is set by the neuron-specific K+-Cl- co-transporter KCC2. Reduced KCC2 levels in the neuronal membrane contribute to the generation of epilepsy, neuropathic pain, and autism spectrum disorders; thus, it is important to characterize the mechanisms regulating KCC2 expression. In the present study, we determined the role of KCC2-protein interactions in regulating total and surface membrane KCC2 expression. Using quantitative immunofluorescence in cultured mouse hippocampal neurons, we discovered that the kainate receptor subunit GluK2 and the auxiliary subunit Neto2 significantly increase the total KCC2 abundance in neurons but that GluK2 exclusively increases the abundance of KCC2 in the surface membrane. Using a live cell imaging assay, we further determined that KCC2 recycling primarily occurs within 1-2 h and that GluK2 produces an ∼40% increase in the amount of KCC2 recycled to the membrane during this time period. This GluK2-mediated increase in surface recycling translated to a significant increase in KCC2 expression in the surface membrane. Moreover, we found that KCC2 recycling is enhanced by protein kinase C-mediated phosphorylation of the GluK2 C-terminal residues Ser-846 and Ser-868. Lastly, using gramicidin-perforated patch clamp recordings, we found that the GluK2-mediated increase in KCC2 recycling to the surface membrane translates to a hyperpolarization of the reversal potential for GABA (EGABA). In conclusion, our results have revealed a mechanism by which kainate receptors regulate KCC2 expression in the hippocampus.


Assuntos
Membrana Celular/metabolismo , Hipocampo/metabolismo , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Receptores de Ácido Caínico/metabolismo , Simportadores/metabolismo , Animais , Membrana Celular/genética , Células Cultivadas , Hipocampo/citologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Neurônios/citologia , Receptores de Ácido Caínico/genética , Simportadores/genética , Cotransportadores de K e Cl- , Receptor de GluK2 Cainato
6.
Nat Commun ; 7: 13721, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004701

RESUMO

Olfactory processing is thought to be actively modulated by the top-down input from cortical regions, but the behavioural function of these signals remains unclear. Here we find that cortical feedback from the anterior olfactory nucleus pars medialis (mAON) bidirectionally modulates olfactory sensitivity and olfaction-dependent behaviours. To identify a limbic input that tunes this mAON switch, we further demonstrate that optogenetic stimulation of ventral hippocampal inputs to the mAON is sufficient to alter olfaction-dependent behaviours.


Assuntos
Comportamento Animal/fisiologia , Hipocampo/fisiologia , Córtex Olfatório/fisiologia , Olfato/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comportamento Animal/efeitos dos fármacos , Cianatos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/fisiologia , Optogenética , Proteína Vermelha Fluorescente
7.
Mol Cell ; 64(6): 1023-1034, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984743

RESUMO

A key challenge in understanding and ultimately treating autism is to identify common molecular mechanisms underlying this genetically heterogeneous disorder. Transcriptomic profiling of autistic brains has revealed correlated misregulation of the neuronal splicing regulator nSR100/SRRM4 and its target microexon splicing program in more than one-third of analyzed individuals. To investigate whether nSR100 misregulation is causally linked to autism, we generated mutant mice with reduced levels of this protein and its target splicing program. Remarkably, these mice display multiple autistic-like features, including altered social behaviors, synaptic density, and signaling. Moreover, increased neuronal activity, which is often associated with autism, results in a rapid decrease in nSR100 and splicing of microexons that significantly overlap those misregulated in autistic brains. Collectively, our results provide evidence that misregulation of an nSR100-dependent splicing network controlled by changes in neuronal activity is causally linked to a substantial fraction of autism cases.


Assuntos
Processamento Alternativo , Transtorno do Espectro Autista/genética , Haploinsuficiência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Modelos Animais de Doenças , Embrião de Mamíferos , Éxons , Feminino , Expressão Gênica , Humanos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Reflexo de Sobressalto , Transmissão Sináptica
8.
Front Cell Neurosci ; 9: 368, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441539

RESUMO

Neto2 is a transmembrane protein that interacts with the neuron-specific K(+)-Cl(-) cotransporter (KCC2) in the central nervous system (CNS). Efficient KCC2 transport is essential for setting the neuronal Cl(-) gradient, which is required for fast GABAergic inhibition. Neto2 is required to maintain the normal abundance of KCC2 in neurons, and increases KCC2 function by binding to the active oligomeric form of this cotransporter. In the present study, we characterized GABAergic inhibition and KCC2-mediated neuronal chloride homeostasis in pyramidal neurons from adult hippocampal slices. Using gramicidin perforated patch clamp recordings we found that the reversal potential for GABA (EGABA) was significantly depolarized. We also observed that surface levels of KCC2 and phosphorylation of KCC2 serine 940 (Ser940) were reduced in Neto2(-/-) neurons compared to wild-type controls. To examine GABAergic inhibition we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) and found that Neto2(-/-) neurons had significant reductions in both their amplitude and frequency. Based on the critical role of Neto2 in regulating GABAergic inhibition we rationalized that Neto2-null mice would be prone to seizure activity. We found that Neto2-null mice demonstrated a decrease in the latency to pentylenetetrazole (PTZ)-induced seizures and an increase in seizure severity.

9.
J Neurophysiol ; 113(3): 808-21, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25411460

RESUMO

Electrical transmission is a dynamically regulated form of communication and key to synchronizing neuronal activity. The bag cell neurons of Aplysia are a group of electrically coupled neuroendocrine cells that initiate ovulation by secreting egg-laying hormone during a prolonged period of synchronous firing called the afterdischarge. Accompanying the afterdischarge is an increase in intracellular Ca2+ and the activation of protein kinase C (PKC). We used whole cell recording from paired cultured bag cell neurons to demonstrate that electrical coupling is regulated by both Ca2+ and PKC. Elevating Ca2+ with a train of voltage steps, mimicking the onset of the afterdischarge, decreased junctional current for up to 30 min. Inhibition was most effective when Ca2+ entry occurred in both neurons. Depletion of Ca2+ from the mitochondria, but not the endoplasmic reticulum, also attenuated the electrical synapse. Buffering Ca2+ with high intracellular EGTA or inhibiting calmodulin kinase prevented uncoupling. Furthermore, activating PKC produced a small but clear decrease in junctional current, while triggering both Ca2+ influx and PKC inhibited the electrical synapse to a greater extent than Ca2+ alone. Finally, the amplitude and time course of the postsynaptic electrotonic response were attenuated after Ca2+ influx. A mathematical model of electrically connected neurons showed that excessive coupling reduced recruitment of the cells to fire, whereas less coupling led to spiking of essentially all neurons. Thus a decrease in electrical synapses could promote the afterdischarge by ensuring prompt recovery of electrotonic potentials or making the neurons more responsive to current spreading through the network.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Cálcio/metabolismo , Neurônios/fisiologia , Animais , Aplysia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Sinapses Elétricas/metabolismo , Sinapses Elétricas/fisiologia , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína Quinase C/antagonistas & inibidores , Transmissão Sináptica
10.
J Neurophysiol ; 112(11): 2680-96, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25185820

RESUMO

In neuroendocrine cells, hormone release often requires a collective burst of action potentials synchronized by gap junctions. This is the case for the electrically coupled bag cell neurons in the reproductive system of the marine snail, Aplysia californica. These neuroendocrine cells are found in two clusters, and fire a synchronous burst, called the afterdischarge, resulting in neuropeptide secretion and the triggering of ovulation. However, the physiology and pharmacology of the bag cell neuron electrical synapse are not completely understood. As such, we made dual whole cell recordings from pairs of electrically coupled cultured bag cell neurons. The junctional current was nonrectifying and not influenced by postsynaptic voltage. Furthermore, junctional conductance was voltage independent and, not surprisingly, strongly correlated with coupling coefficient magnitude. The electrical synapse also acted as a low-pass filter, although under certain conditions, electrotonic potentials evoked by presynaptic action potentials could drive postsynaptic spikes. If coupled neurons were stimulated to spike simultaneously, they presented a high degree of action potential synchrony compared with not-coupled neurons. The electrical synapse failed to pass various intracellular dyes, but was permeable to Cs(+), and could be inhibited by niflumic acid, meclofenamic acid, or 5-nitro-2-(3-phenylpropylamino)benzoic acid. Finally, extracellular and sharp-electrode recording from the intact bag cell neuron cluster showed that these pharmacological uncouplers disrupted both electrical coupling and afterdischarge generation in situ. Thus electrical synapses promote bag cell neuron firing synchrony and may allow for electrotonic spread of the burst through the network, ultimately contributing to propagation of the species.


Assuntos
Potenciais de Ação , Sinapses Elétricas/fisiologia , Neurônios/fisiologia , Potenciais Sinápticos , Animais , Aplysia , Césio/farmacologia , Sinapses Elétricas/efeitos dos fármacos , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Ácido Meclofenâmico/farmacologia , Neurônios/efeitos dos fármacos , Ácido Niflúmico/farmacologia , Nitrobenzoatos/farmacologia
11.
J Neurosci ; 33(17): 7428-38, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616549

RESUMO

Polarization sensitivity (PS) in vertebrate vision is controversial, perhaps because its underlying mechanism has remained obscure. An issue that might have added to the controversy is that rainbow trout (Oncorhynchus mykiss), which have served as the primary model system for polarization-based orientation, lose their ability to orient relative to celestial polarized-light patterns when parr (fry) transform into migratory smolts (juveniles), which would benefit most from polarization-based orientation. Here we addressed two key questions: (1) what is the mechanism underling PS?, and (2) how can the paradoxical loss of PS in trout smolts be reconciled? We assessed PS from optic nerve recordings in parr and smolts and found that the retinal region with enhanced PS shifted from the ventral retina in parr to the dorsal retina in smolts. This adaptation may allow fish to use the most reliable polarization field encountered at each life stage, the celestial polarization field in the shallow-swimming parr and the depth-insensitive underwater polarization field in the deep-swimming smolts. In addition, we assessed spectral sensitivity across the retina and during ontogeny and fit a cascade retinal model to PS data. We found that differential contribution of two cone detectors with orthogonal PS could drive the variation in PS and that feedback from horizontal cells to cones could explain the differential amplification of PS. This elegant arrangement, in which weak PS of cones is amplified and tuned by retinal networks, allows for PS without interfering with sampling of other visual information and illustrates how sensory systems may simultaneously process disparate aspects of physical environments.


Assuntos
Potenciais de Ação/fisiologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Orientação/fisiologia , Retina/crescimento & desenvolvimento , Animais , Rede Nervosa/crescimento & desenvolvimento , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...