Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Commun Biol ; 5(1): 1181, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333531

RESUMO

There is increasing evidence suggesting the role of microbiome alterations in relation to pancreatic adenocarcinoma and tumor immune functionality. However, molecular mechanisms of the interplay between microbiome signatures and/or their metabolites in pancreatic tumor immunosurveillance are not well understood. We have identified that a probiotic strain (Lactobacillus casei) derived siderophore (ferrichrome) efficiently reprograms tumor-associated macrophages (TAMs) and increases CD8 + T cell infiltration into tumors that paralleled a marked reduction in tumor burden in a syngeneic mouse model of pancreatic cancer. Interestingly, this altered immune response improved anti-PD-L1 therapy that suggests promise of a novel combination (ferrichrome and immune checkpoint inhibitors) therapy for pancreatic cancer treatment. Mechanistically, ferrichrome induced TAMs polarization via activation of the TLR4 pathway that represses the expression of iron export protein ferroportin (FPN1) in macrophages. This study describes a novel probiotic based molecular mechanism that can effectively induce anti-tumor immunosurveillance and improve immune checkpoint inhibitors therapy response in pancreatic cancer.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Probióticos , Camundongos , Animais , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/metabolismo , Sideróforos , Microambiente Tumoral , Ferricromo/uso terapêutico , Monitorização Imunológica , Inibidores de Checkpoint Imunológico , Probióticos/farmacologia , Neoplasias Pancreáticas
3.
Elife ; 112022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775614

RESUMO

Bariatric surgery is a sustainable weight loss approach, including vertical sleeve gastrectomy (VSG). Obesity exacerbates tumor growth, while diet-induced weight loss impairs progression. It remains unknown how bariatric surgery-induced weight loss impacts cancer progression or alters response to therapy. Using a pre-clinical model of obesity followed by VSG or diet-induced weight loss, breast cancer progression and immune checkpoint blockade therapy were investigated. Weight loss by VSG or weight-matched dietary intervention before tumor engraftment protected against obesity-exacerbated tumor progression. However, VSG was not as effective as diet in reducing tumor burden despite achieving similar weight and adiposity loss. Leptin did not associate with changes in tumor burden; however, circulating IL-6 was elevated in VSG mice. Uniquely, VSG tumors displayed elevated inflammation and immune checkpoint ligand PD-L1+ myeloid and non-immune cells. VSG tumors also had reduced T lymphocytes and markers of cytolysis, suggesting an ineffective anti-tumor microenvironment which prompted investigation of immune checkpoint blockade. While obese mice were resistant to immune checkpoint blockade, anti-PD-L1 potently impaired tumor progression after VSG through improved anti-tumor immunity. Thus, in formerly obese mice, surgical weight loss followed by immunotherapy reduced breast cancer burden. Finally, we compared transcriptomic changes in adipose tissue after bariatric surgery from patients and mouse models. A conserved bariatric surgery-associated weight loss signature (BSAS) was identified which significantly associated with decreased tumor volume. Findings demonstrate conserved impacts of obesity and bariatric surgery-induced weight loss pathways associated with breast cancer progression.


As the number of people classified as obese rises globally, so do obesity-related health risks. Studies show that people diagnosed with obesity have inflammation that contributes to tumor growth and their immune system is worse at detecting cancer cells. But weight loss is not currently used as a strategy for preventing or treating cancer. Surgical procedures for weight loss, also known as 'bariatric surgeries', are becoming increasingly popular. Recent studies have shown that individuals who lose weight after these treatments have a reduced risk of developing tumors. But how bariatric surgery directly impacts cancer progression has not been well studied: does it slow tumor growth or boost the anti-tumor immune response? To answer these questions, Sipe et al. compared breast tumor growth in groups of laboratory mice that were obese due to being fed a high fat diet. The first group of mice lost weight after undergoing a bariatric surgery in which part of their stomach was removed. The second lost the same amount of weight but after receiving a restricted diet, and the third underwent a fake surgery and did not lose any weight. The experiments found that surgical weight loss cuts breast cancer tumor growth in half compared with obese mice. But mice who lost the same amount of weight through dietary restrictions had even less tumor growth than surgically treated mice. The surgically treated mice who lost weight had more inflammation than mice in the two other groups, and had increased amounts of proteins and cells that block the immune response to tumors. Giving the surgically treated mice a drug that enhances the immune system's ability to detect and destroy cancer cells reduced inflammation and helped shrink the mice's tumors. Finally, Sipe et al. identified 54 genes which were turned on or off after bariatric surgery in both mice and humans, 11 of which were linked with tumor size. These findings provide crucial new information about how bariatric surgery can impact cancer progression. Future studies could potentially use the conserved genes identified by Sipe et al. to develop new ways to stimulate the anti-cancer benefits of weight loss without surgery.


Assuntos
Cirurgia Bariátrica , Neoplasias , Animais , Cirurgia Bariátrica/efeitos adversos , Gastrectomia/efeitos adversos , Inibidores de Checkpoint Imunológico , Camundongos , Camundongos Obesos , Neoplasias/cirurgia , Obesidade/metabolismo , Redução de Peso
4.
Cancer Lett ; 531: 98-108, 2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35074498

RESUMO

Myeloid-derived suppressor cells (MDSCs) are an immature innate cell population that expands in pathological conditions such as cancer and suppresses T cells via production of immunosuppressive factors. Conversely, efficient cytotoxic T cell priming is dependent on the ability of antigen-presenting cells (APCs) to cross-present tumor antigens to CD8+ T cells, a process that requires a specific subtype of dendritic cells (DCs) called conventional DC1 (cDC1) which are often dysfunctional in cancer. One way to activate cDC1 is ligation of CD40 which is abundantly expressed by myeloid cells and its agonism leads to myeloid cell activation. Thus, targeting MDSCs while simultaneously expanding cross-presenting DCs represents a promising strategy that, when combined with agonistic CD40, may result in long-lasting protective immunity. In this study, we investigated the effect of PKC agonists PEP005 and prostratin on MDSC expansion, differentiation, and recruitment to the tumor microenvironment. Our findings demonstrate that PKC agonists decreased MDSC expansion from hematopoietic progenitors and induced M-MDSC differentiation to an APC-like phenotype that expresses cDC1-related markers via activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Simultaneously, PKC agonists favored cDC1 expansion at the expense of cDC2 and plasmacytoid DCs (pDC). Functionally, PKC agonists blunted MDSC suppressive activity and enhanced MDSC cross-priming capacity both in vitro and in vivo. Finally, combination of PKC agonism with agonistic CD40 mAb resulted in a marked reduction in tumor growth with a significant increase in intratumoral activated CD8+ T cells and tissue-resident memory CD8+ T cells in a syngeneic breast cancer mouse model. In sum, this work proposes a novel promising strategy to simultaneously target MDSCs and promote APC function that may have highly impactful clinical relevance in cancer patients.


Assuntos
Neoplasias da Mama , Apresentação Cruzada , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos , Células Dendríticas , Feminino , Humanos , Imunidade Inata , Camundongos , Microambiente Tumoral
5.
Cell Rep ; 35(12): 109285, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161764

RESUMO

Immune checkpoint blockade (ICB) has improved outcomes in some cancers. A major limitation of ICB is that most patients fail to respond, which is partly attributable to immunosuppression. Obesity appears to improve immune checkpoint therapies in some cancers, but impacts on breast cancer (BC) remain unknown. In lean and obese mice, tumor progression and immune reprogramming were quantified in BC tumors treated with anti-programmed death-1 (PD-1) or control. Obesity augments tumor incidence and progression. Anti-PD-1 induces regression in lean mice and potently abrogates progression in obese mice. BC primes systemic immunity to be highly responsive to obesity, leading to greater immunosuppression, which may explain greater anti-PD-1 efficacy. Anti-PD-1 significantly reinvigorates antitumor immunity despite persistent obesity. Laminin subunit beta-2 (Lamb2), downregulated by anti-PD-1, significantly predicts patient survival. Lastly, a microbial signature associated with anti-PD-1 efficacy is identified. Thus, anti-PD-1 is highly efficacious in obese mice by reinvigorating durable antitumor immunity. VIDEO ABSTRACT.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Obesidade/complicações , Microambiente Tumoral/imunologia , Animais , Neoplasias da Mama/complicações , Neoplasias da Mama/genética , Progressão da Doença , Feminino , Microbioma Gastrointestinal , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Terapia de Imunossupressão , Imunoterapia , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Estrogênio/metabolismo , Baço/patologia , Carga Tumoral , Microambiente Tumoral/efeitos dos fármacos
7.
Cell Stem Cell ; 10(5): 520-30, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22560076

RESUMO

The decline in hematopoietic function seen during aging involves a progressive reduction in the immune response and an increased incidence of myeloid malignancy, and has been linked to aging of hematopoietic stem cells (HSCs). The molecular mechanisms underlying HSC aging remain unclear. Here we demonstrate that elevated activity of the small RhoGTPase Cdc42 in aged HSCs is causally linked to HSC aging and correlates with a loss of polarity in aged HSCs. Pharmacological inhibition of Cdc42 activity functionally rejuvenates aged HSCs, increases the percentage of polarized cells in an aged HSC population, and restores the level and spatial distribution of histone H4 lysine 16 acetylation to a status similar to that seen in young HSCs. Our data therefore suggest a mechanistic role for Cdc42 activity in HSC biology and epigenetic regulation, and identify Cdc42 activity as a pharmacological target for ameliorating stem cell aging.


Assuntos
Senescência Celular , Células-Tronco Hematopoéticas/fisiologia , Histonas/metabolismo , Tubulina (Proteína)/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Acetilação , Senilidade Prematura/genética , Animais , Polaridade Celular/genética , Células Cultivadas , Proteínas Ativadoras de GTPase/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Células Mieloides/fisiologia , Transporte Proteico/genética , Rejuvenescimento , Proteína cdc42 de Ligação ao GTP/farmacologia
8.
J Biol Chem ; 286(27): 24068-78, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21572048

RESUMO

Adult hematopoietic progenitor cells (HPCs) are maintained by highly coordinated signals in the bone marrow. The molecular mechanisms linking intracellular signaling network of HPCs with their microenvironment remain poorly defined. The Rho family GTPase Rac1/Rac2 has previously been implicated in cell functions involved in HPC maintenance, including adhesion, migration, homing, and mobilization. In the present studies we have identified R-Ras, a member of the Ras family, as a key signal mediator required for Rac1/Rac2 activation. We found that whereas Rac1 activity is up-regulated upon stem cell factor, integrin, or CXCL12 stimulation, R-Ras activity is inversely up-regulated. Expression of a constitutively active R-Ras mutant resulted in down-regulation of Rac1-activity whereas deletion of R-Ras led to an increase in Rac1/Rac2 activity and signaling. R-Ras(-/-) HPCs displayed a constitutively assembled cortical actin structure and showed increased directional migration. Rac1/Rac2 inhibition reversed the migration phenotype of R-Ras(-/-) HPCs, similar to that by expressing an R-Ras active mutant. Furthermore, R-Ras(-/-) mice showed enhanced responsiveness to G-CSF for HPC mobilization and exhibited decreased bone marrow homing. Transplantation experiments indicate that the R-Ras deficiency-induced HPC mobilization is a HPC intrinsic property. These results indicate that R-Ras is a critical regulator of Rac signaling required for HPC migration, homing, and mobilization.


Assuntos
Movimento Celular/fisiologia , Células-Tronco Hematopoéticas/enzimologia , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Actinas/genética , Actinas/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/enzimologia , Animais , Ativação Enzimática/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Knockout , Mutação , Neuropeptídeos/genética , Transplante Homólogo , Regulação para Cima/fisiologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP , Proteínas ras/genética , Proteína RAC2 de Ligação ao GTP
9.
Nat Med ; 16(10): 1141-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20871610

RESUMO

Mobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However, G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors, precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently, new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization. Using a forward genetic approach in mice, we mapped the gene encoding the epidermal growth factor receptor (Egfr) to a genetic region modifying G-CSF-mediated HSPC mobilization. Amounts of EGFR in HSPCs inversely correlated with the cells' ability to be mobilized by G-CSF, implying a negative role for EGFR signaling in mobilization. In combination with G-CSF treatment, genetic reduction of EGFR activity in HSPCs (in waved-2 mutant mice) or treatment with the EGFR inhibitor erlotinib increased mobilization. Increased mobilization due to suppression of EGFR activity correlated with reduced activity of cell division control protein-42 (Cdc42), and genetic Cdc42 deficiency in vivo also enhanced G-CSF-induced mobilization. Our findings reveal a previously unknown signaling pathway regulating stem cell mobilization and provide a new pharmacological approach for improving HSPC mobilization and thereby transplantation outcomes.


Assuntos
Receptores ErbB/antagonistas & inibidores , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas , Transdução de Sinais , Animais , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteína cdc42 de Ligação ao GTP/fisiologia
10.
Haematologica ; 95(1): 27-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20065081

RESUMO

BACKGROUND: The small Rho GTPases Rac1 and Rac2 have both overlapping and distinct roles in actin organization, cell survival, and proliferation in various hematopoietic cell lineages. The role of these Rac GTPases in erythropoiesis has not yet been fully elucidated. DESIGN AND METHODS: Cre-recombinase-induced deletion of Rac1 genomic sequence was accomplished on a Rac2-null genetic background, in mouse hematopoietic cells in vivo. The erythroid progenitors and precursors in the bone marrow and spleen of these genetically engineered animals were evaluated by colony assays and flow cytometry. Apoptosis and proliferation of the different stages of erythroid progenitors and precursors were evaluated by flow cytometry. RESULTS: Erythropoiesis in Rac1(-/-);Rac2(-/-) mice is characterized by abnormal burst-forming unit-erythroid colony morphology and decreased numbers of megakaryocyte-erythrocyte progenitors, erythroid colony-forming units, and erythroblasts in the bone marrow. In contrast, splenic erythropoiesis is increased. Combined Rac1 and Rac2 deficiency compromises proliferation of the megakaryocyte-erythrocyte progenitor population in the bone marrow, while it allows increased survival and proliferation of megakaryocyte-erythrocyte progenitors in the spleen. Conclusions These data suggest that Rac1 and Rac2 GTPases are essential for normal bone marrow erythropoiesis but that they are dispensable for erythropoiesis in the spleen, implying different signaling pathways for homeostatic and stress erythropoiesis.


Assuntos
Células da Medula Óssea/enzimologia , Eritropoese/fisiologia , Neuropeptídeos/fisiologia , Baço/enzimologia , Proteínas rac de Ligação ao GTP/fisiologia , Animais , Células da Medula Óssea/citologia , Eritroblastos/enzimologia , GTP Fosfo-Hidrolases/sangue , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeos/sangue , Neuropeptídeos/genética , Especificidade de Órgãos/genética , Baço/citologia , Fatores de Tempo , Proteínas rac de Ligação ao GTP/sangue , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP , Proteína RAC2 de Ligação ao GTP
11.
Blood ; 114(17): 3557-66, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19713466

RESUMO

Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow, self-renewal, proliferation, and differentiation to mature blood cells. Here, we show that loss of p190-B RhoGTPase activating protein, a negative regulator of Rho GTPases, results in enhanced long-term engraftment during serial transplantation. This effect is associated with maintenance of functional HSC-enriched cells. Furthermore, loss of p190-B led to marked improvement of HSC in vivo repopulation capacity during ex vivo culture without altering proliferation and multilineage differentiation of HSC and progeny. Transcriptional analysis revealed that p190-B deficiency represses the up-regulation of p16(Ink4a) in HSCs in primary and secondary transplantation recipients, providing a possible mechanism of p190-B-mediated HSC functions. Our study defines p190-B as a critical transducer element of HSC self-renewal activity and long-term engraftment, thus suggesting that p190-B is a target for HSC-based therapies requiring maintenance of engraftment phenotype.


Assuntos
Proteínas Ativadoras de GTPase/fisiologia , Sobrevivência de Enxerto , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Fígado/embriologia , Animais , Ciclo Celular , Proliferação de Células , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feto/metabolismo , Citometria de Fluxo , Mobilização de Células-Tronco Hematopoéticas , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Condicionamento Pré-Transplante
12.
Blood ; 114(2): 290-8, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19357397

RESUMO

Aged hematopoietic stem cells (HSCs) are impaired in supporting hematopoiesis. The molecular and cellular mechanisms of stem cell aging are not well defined. HSCs interact with nonhematopoietic stroma cells in the bone marrow forming the niche. Interactions of hematopoietic cells with the stroma/microenvironment inside bone cavities are central to hematopoiesis as they regulate cell proliferation, self-renewal, and differentiation. We recently hypothesized that one underlying cause of altered hematopoiesis in aging might be due to altered interactions of aged stem cells with the microenvironment/niche. We developed time-lapse 2-photon microscopy and novel image analysis algorithms to quantify the dynamics of young and aged hematopoietic cells inside the marrow of long bones of mice in vivo. We report in this study that aged early hematopoietic progenitor cells (eHPCs) present with increased cell protrusion movement in vivo and localize more distantly to the endosteum compared with young eHPCs. This correlated with reduced adhesion to stroma cells as well as reduced cell polarity upon adhesion of aged eHPCs. These data support a role of altered eHPC dynamics and altered cell polarity, and thus altered niche biology in mechanisms of mammalian aging.


Assuntos
Envelhecimento/fisiologia , Osso e Ossos/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Movimento Celular , Macrófagos/citologia , Camundongos , Fatores de Tempo
13.
Blood ; 111(4): 1894-902, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18048646

RESUMO

The retinoblastoma tumor suppressor protein (RB) plays important roles in the control of the cell division cycle. It is estimated that RB is dysfunctional/inactivated in up to 40% of human leukemias. The consequences of loss of RB on hematopoietic stem and progenitor cell (HSPC) function in vivo are incompletely understood. Here, we report that mice genetically deficient in Rb in all hematopoietic cells (Vav-Cre Rb knockout [KO] animals) showed altered contribution of distinct hematopoietic cell lineages to peripheral blood, bone marrow, and spleen; significantly increased extramedullary hematopoiesis in the spleen; and a 2-fold increase in the frequency of hematopoietic progenitor cells in peripheral blood. Upon competitive transplantation, HSPCs from Vav-Cre Rb KO mice contributed with an at least 4- to 6-fold less efficiency to hematopoiesis compared with control cells. HSPCs deficient in Rb presented with impaired cell-cycle exit upon stress-induced proliferation, which correlated with impaired function. In summary, Rb is critical for hematopoietic stem and progenitor cell function, localization, and differentiation.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Proteína do Retinoblastoma/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Divisão Celular , Cruzamentos Genéticos , Camundongos , Camundongos Knockout , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Baço/citologia , Baço/fisiologia , Estresse Fisiológico
14.
Blood ; 108(7): 2190-7, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16741255

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are located in the bone marrow in close association with a highly organized 3-dimensional structure formed by stroma cells, referred to as the niche. Mobilization of HSPCs from bone marrow to peripheral blood in response to granulocyte colony-stimulating factor (G-CSF) requires de-adhesion of HSPCs from the niche. The influence of aging of HSPCs on cell-stroma interactions has not been determined in detail. Using a mouse model of G-CSF-induced mobilization, we demonstrated that the ability to mobilize hematopoietic stem cells is approximately 5-fold greater in aged mice. Competitive mobilization experiments confirmed that enhanced mobilization ability was intrinsic to the stem cell. Enhanced mobilization efficiency of primitive hematopoietic cells from aged mice correlated with reduced adhesion of hematopoietic progenitor cells to stroma and with elevated levels of GTP-bound Cdc42. These results might indicate that stroma-stem cell interactions are dynamic over a lifetime and result in physiologically relevant changes in the biology of primitive hematopoietic cells with age.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Envelhecimento , Animais , Adesão Celular , Movimento Celular , Fator Estimulador de Colônias de Granulócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células-Tronco/citologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...