Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(10): eadj6380, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446889

RESUMO

Nanomaterials offer unique opportunities to engineer immunomodulatory activity. In this work, we report the Toll-like receptor agonist activity of a nanoscale adjuvant zeolitic imidazolate framework-8 (ZIF-8). The accumulation of ZIF-8 in endosomes and the pH-responsive release of its subunits enable selective engagement with endosomal Toll-like receptors, minimizing the risk of off-target activation. The intrinsic adjuvant properties of ZIF-8, along with the efficient delivery and biomimetic presentation of a severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain trimer, primed rapid humoral and cell-mediated immunity in a dose-sparing manner. Our study offers insights for next-generation adjuvants that can potentially impact future vaccine development.


Assuntos
COVID-19 , Zeolitas , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Adjuvantes Imunológicos , Endossomos , Receptores Toll-Like , Zeolitas/farmacologia
2.
Nat Biotechnol ; 42(3): 510-517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37095347

RESUMO

Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , Vacinas contra COVID-19/genética , Vacinas de mRNA , RNA Mensageiro/genética , SARS-CoV-2/genética , COVID-19/prevenção & controle
3.
Bioeng Transl Med ; 8(1): e10335, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684071

RESUMO

Adhesions are dense, fibrous bridges that adjoin tissue surfaces due to uncontrolled inflammation following postoperative mesothelial injury. A widely used adhesion barrier material in Seprafilm often fails to prevent transverse scar tissue deposition because of its poor mechanical properties, rapid degradation profile, and difficulty in precise application. Solution blow spinning (SBS), a polymer fiber deposition technique, allows for the placement of in situ tissue-conforming and tissue-adherent scaffolds with exceptional mechanical properties. While biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA) have desirable strength, they exhibit bulk biodegradation rates and inflammatory profiles that limit their use as adhesion barriers and result in poor tissue adhesion. Here, viscoelastic poly(lactide-co-caprolactone) (PLCL) is used for its pertinent biodegradation mechanism. Because it degrades via surface erosion, spray deposited PLCL fibers can dissolve new connections formed by inflamed tissue, allowing them to function as an effective, durable, and easy-to-apply adhesion barrier. Degradation kinetics are tuned to match adhesion formation through the design of PLCL blends comprised of highly adhesive "low"-molecular weight (LMW) constituents in a mechanically robust "high"-molecular weight (HMW) matrix. In vitro studies demonstrate that blending LMW PLCL (30% w/v) with HMW PLCL (70% w/v) yields an anti-fibrotic yet tissue-adhesive polymer sealant with a 14-day erosion rate countering adhesion formation. PLCL blends additionally exhibit improved wet tissue adhesion strength (~10 kPa) over a 14-day period versus previously explored biodegradable polymer compositions, such as PLGA. In a mouse cecal ligation model, select PLCL blends significantly reduce abdominal adhesions severity versus no treatment and Seprafilm-treated controls.

4.
Proc Natl Acad Sci U S A ; 119(51): e2211534119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508653

RESUMO

Food fortification is an effective strategy to address vitamin A (VitA) deficiency, which is the leading cause of childhood blindness and drastically increases mortality from severe infections. However, VitA food fortification remains challenging due to significant degradation during storage and cooking. We utilized an FDA-approved, thermostable, and pH-responsive basic methacrylate copolymer (BMC) to encapsulate and stabilize VitA in microparticles (MPs). Encapsulation of VitA in VitA-BMC MPs greatly improved stability during simulated cooking conditions and long-term storage. VitA absorption was nine times greater from cooked MPs than from cooked free VitA in rats. In a randomized controlled cross-over study in healthy premenopausal women, VitA was readily released from MPs after consumption and had a similar absorption profile to free VitA. This VitA encapsulation technology will enable global food fortification strategies toward eliminating VitA deficiency.


Assuntos
Deficiência de Vitamina A , Vitamina A , Feminino , Ratos , Animais , Alimentos Fortificados , Estudos Cross-Over , Culinária , Micronutrientes
5.
Sci Adv ; 8(28): eabn5315, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857507

RESUMO

Next-generation therapeutics require advanced drug delivery platforms with precise control over morphology and release kinetics. A recently developed microfabrication technique enables fabrication of a new class of injectable microparticles with a hollow core-shell structure that displays pulsatile release kinetics, providing such capabilities. Here, we study this technology and the resulting core-shell microstructures. We demonstrated that pulsatile release is governed by a sudden increase in porosity of the polymeric matrix, leading to the formation of a porous path connecting the core to the environment. Moreover, the release kinetics within the range studied remained primarily independent of the particle geometry but highly dependent on its composition. A qualitative technique was developed to study the pattern of pH evolution in the particles. A computational model successfully modeled deformations, indicating sudden expansion of the particle before onset of release. Results of this study contribute to the understanding and design of advanced drug delivery systems.

6.
Burns ; 48(8): 1950-1965, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151510

RESUMO

Autologous skin cell suspensions (ASCS) can treat burns of varying depths with the advantage of reduced donor site wound burden. The current standard primary dressing for ASCS is a nonabsorbant, non-adherent, perforated film (control) which has limited conformability over heterogeneous wound beds and allows for run-off of the ASCS. To address these concerns, a novel spray-on polymer formulation was tested as a potential primary dressing in porcine deep partial thickness (DPT) and full thickness (FT) wounds. It was hypothesized that the polymer would perform as well as control dressing when evaluating wound healing and scarring. DPT or FT wounds were treated with either a spray-on poly(lactic-co-glycolic acid) (PLGA) and poly(lactide-co-caprolactone) (PLCL) formulation or control ASCS dressings. Throughout the experimental time course (to day 50), we found no significant differences between polymer and control wounds in % re-epithelialization, graft-loss, epidermal or dermal thickness, or % dermal cellularity in either model. Pigmentation, erythema, elasticity, and trans-epidermal water loss (TEWL), were not significantly altered between the treatment groups, but differences between healing wounds/scars and un-injured skin were observed. No cytotoxic effect was observed in ASCS incubated with the PLGA and PLCL polymers. These data suggest that the novel spray-on polymer is a viable option as a primary dressing, with improved ease of application and conformation to irregular wounds. Polymer formulation and application technique should be a subject of future research.


Assuntos
Queimaduras , Suínos , Animais , Queimaduras/cirurgia , Projetos Piloto , Transplante de Pele/métodos , Polímeros/uso terapêutico , Cicatrização , Cicatriz
7.
ACS Biomater Sci Eng ; 7(8): 3908-3916, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34323468

RESUMO

Pressure-sensitive adhesives typically used for bandages are nonbiodegradable, inhibiting healing, and may cause an allergic reaction. Here, we investigated the effect of biodegradable copolymers with promising thermomechanical properties on wound healing for their eventual use as biodegradable, biocompatible adhesives. Blends of low molecular weight (LMW) and high molecular weight (HMW) poly(lactide-co-caprolactone) (PLCL) are investigated as tissue adhesives in comparison to a clinical control. Wounds treated with PLCL blend adhesives heal completely with similar vascularization, scarring, and inflammation indicators, yet require fewer dressing changes due to integration of the PLCL adhesive into the wound. A blend of LMW and HMW PLCL produces an adhesive material with significantly higher adhesive strength than either neat polymer. Wound adhesion is comparable to a polyurethane bandage, utilizing conventional nonbiodegradable adhesives designed for extremely strong adhesion.


Assuntos
Adesivos Teciduais , Adesivos , Bandagens , Poliésteres , Cicatrização
8.
ACS Appl Mater Interfaces ; 12(14): 16050-16057, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32191429

RESUMO

Viscoelastic blends of biodegradable polyesters with low and high molecular weight distributions have remarkably strong adhesion (significantly greater than 1 N/cm2) to soft, wet tissue. Those that transition from viscous flow to elastic, solidlike behavior at approximately 1 Hz demonstrate pressure-sensitivity yet also have sufficient elasticity for durable bonding to soft, wet tissue. The pressure-sensitive tissue adhesive (PSTA) blends produce increasingly stronger pull-apart adhesion in response to compressive pressure application, from 10 to 300 s. By incorporating a stiffer high molecular weight component, the PSTA exhibits dramatically improved burst pressure (greater than 100 kPa) when used as a tissue sealant. The PSTA's biodegradation mechanism can be switched from erosion (occurring primarily over the first 10 days) to bulk chemical degradation (and minimal erosion) depending on the chemistry of the high molecular weight component. Interestingly, fibrosis toward the PSTA is reduced when fast-occurring erosion is the dominant biodegradation mechanism.


Assuntos
Plásticos Biodegradáveis/química , Poliésteres/farmacologia , Aderências Teciduais , Adesivos Teciduais/farmacologia , Plásticos Biodegradáveis/uso terapêutico , Elasticidade , Humanos , Poliésteres/química , Polímeros/química , Polímeros/farmacologia , Pressão , Reologia , Adesivos Teciduais/química , Substâncias Viscoelásticas/química , Substâncias Viscoelásticas/farmacologia , Viscosidade/efeitos dos fármacos
9.
Bioeng Transl Med ; 5(1): e10149, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31989038

RESUMO

Conventional wound dressings are difficult to apply to large total body surface area (TBSA) wounds, as they typically are prefabricated, require a layer of adhesive coating for fixation, and need frequent replacement for entrapped exudate. Large TBSA wounds as well as orthopedic trauma and low-resource surgery also have a high risk of infection. In this report, a sprayable and intrinsically adhesive wound dressing loaded with antimicrobial silver is investigated that provides personalized fabrication with minimal patient contact. The dressing is composed of adhesive and biodegradable poly(lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA/PEG) blend fibers with or without silver salt (AgNO3). in vitro studies demonstrate that the PLGA/PEG/Ag dressing has antimicrobial properties and low cytotoxicity, with antimicrobial silver controllably released over 7-14 days. In a porcine partial-thickness wound model, the wounds treated with both antimicrobial and nonantimicrobial PLGA/PEG dressings heal at rates similar to those of the clinical, thin film polyurethane wound dressing, with similar scarring. However, PLGA/PEG adds a number of features beneficial for wound healing: greater exudate absorption, integration into the wound, a 25% reduction in dressing changes, and tissue regeneration with greater vascularization. There is also modest improvement in epidermis thickness compared to the control wound dressing.

10.
Nanoscale ; 11(38): 17904-17912, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31552983

RESUMO

A tunable protease responsive nanoparticle hydrogel (PRNH) that demonstrates large non-iridescent color changes due to a degradation-directed assembly of nanoparticles is reported. Structurally colored composites are fabricated with silica particles, 4-arm poly(ethylene glycol) norbornene (4PEGN), and a proteolytically degradable peptide. When placed in a protease solution, the peptide crosslinks degrade causing electrostatic binding and adsorption of the polymer to the particle surface which leads to the assembly of particles into compact amorphous arrays with structural color. The particle surface charge and size is investigated to probe their effect on the assembly mechanism. Interestingly, only PRNHs with highly negative particle surface charge exhibit color changes after degradation. Ultra-small angle X-ray scattering revealed that the particles become coated in polymer after degradation, producing a material with less order compared to the initial state. Altering the particle diameter modulates the composites' color, and all sizes investigated (178-297 nm) undergo the degradation-directed assembly. Varying the amount of 4PEGN adjusts the swollen PRNH color and has no effect on the degradation-directed assembly. Taken together, the effects of surface charge, particle size, and polymer concentration allow for the formulation of new design rules for fabricating tunable PRNHs that display vivid changes in structural color upon degradation.


Assuntos
Hidrogéis/química , Nanopartículas/química , Peptídeo Hidrolases/química , Polietilenoglicóis/química , Dióxido de Silício/química , Tamanho da Partícula
11.
Acta Biomater ; 90: 205-216, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30954624

RESUMO

Commercially available surgical sealants for internal use either lack sufficient adhesion or produce cytotoxicity. This work describes a surgical sealant based on a polymer blend of poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) that increases wet tissue adherence by incorporation of nano-to-microscale silica particles, without significantly affecting cell viability, biodegradation rate, or local inflammation. In functional studies, PLGA/PEG/silica composite sealants produce intestinal burst pressures that are comparable to cyanoacrylate glue (160 mmHg), ∼2 times greater than the non-composite sealant (59 mmHg), and ∼3 times greater than fibrin glue (49 mmHg). The addition of silica to PLGA/PEG is compatible with a sprayable in situ deposition method called solution blow spinning and decreases coagulation time in vitro and in vivo. These improvements are biocompatible and cause minimal additional inflammation, demonstrating the potential of a simple composite design to increase adhesion to wet tissue through physical, noncovalent mechanisms and enable use in procedures requiring simultaneous occlusion and hemostasis. STATEMENT OF SIGNIFICANCE: Incorporating silica particles increases the tissue adhesion of a polymer blend surgical sealant. The particles enable interfacial physical bonding with tissue and enhance the flexibility of the bulk of the sealant, without significantly affecting cytotoxicity, inflammation, or biodegradation. These studies also demonstrate how silica particles decrease blood coagulation time. This surgical sealant improves upon conventional devices because it can be easily deposited with accuracy directly onto the surgical site as a solid polymer fiber mat. The deposition method, solution blow spinning, allows for high loading in the composite fibers, which are sprayed from a polymer blend solution containing suspended silica particles. These findings could easily be translated to other implantable or wearable devices due to the versatility of silica particles.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Poliésteres , Polietilenoglicóis , Dióxido de Silício , Adesivos Teciduais , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Camundongos , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Suínos , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia
12.
ACS Appl Mater Interfaces ; 10(39): 33043-33048, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30207445

RESUMO

Improving the portability of diagnostic medicine is crucial for alleviating global access-to-care deficiencies. This requires not only designing devices that are small and lightweight, but also autonomous and independent of electricity. Here, we present a strategy for conducting automated multistep diagnostic assays using chemically generated, passively regulated heat. Ligation and polymerization reagents for rolling circle amplification of nucleic acids are separated by meltable phase-change partitions, thus replacing precise manual reagent additions with automated partition melting. To actuate these barriers and individually initiate the various steps of the reaction, field ration heaters exothermically generate heat in a thermos, whereas fatty acids embedded in a carbonaceous matrix passively buffer the temperature around their melting points. Achieving multistage temperature profiles extend the capability of instrument-free diagnostic devices and improve the portability of reaction automation systems built around phase-change partitions.


Assuntos
Técnicas Biossensoriais/métodos , Temperatura Alta , Temperatura
13.
J Pediatr Surg ; 52(8): 1308-1312, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27956071

RESUMO

BACKGROUND: Solution blow spinning is a technique for depositing polymer fibers with promising potential use as a surgical sealant. This study assessed the feasibility and efficacy of solution blow spun polymer (BSP) for sealing bowel perforations in a mouse model of partial cecal transection. We then evaluated its use for reinforcing a surgical anastomosis in a preclinical piglet model. METHODS: Three commercially available surgical sealants (fibrin glue, polyethylene glycol (PEG) hydrogel, and cyanoacrylate) were compared to BSP in the ability to seal partially transected cecum in mice. For anastomosis feasibility testing in a piglet model, piglets were subjected to small bowel transection with sutured anastomosis reinforced with BSP application. Outcome measures included anastomotic burst pressure, anastomotic leak rate, 14-day survival, and complication rate. RESULTS: For the mouse model, the survival rates for the sealants were 30% for fibrin glue, 20% for PEG hydrogel, 78% for cyanoacrylate, and 67% for BSP. Three of 9 mice died after BSP administration because of perforation leak, failure to thrive with partial obstruction at the perforation site, and unknown causes. All other mice died of perforation leak. The mean burst pressure at 24h was significantly higher for BSP (81mm Hg) when compared to fibrin glue (6mm Hg, p=0.047) or PEG hydrogel (10mm Hg, p=0.047), and comparable to cyanoacrylate (64mm Hg, p=0.91). For piglets, 4 of 4 animals survived at 14days. Mean burst pressures at time of surgery were 37±5mm Hg for BSP and 11±9mm Hg for suture-only controls (p=0.09). CONCLUSIONS: Solution blow spinning may be an effective technique as an adjunct for sealing of gastrointestinal anastomosis. Further preclinical testing is warranted to better understand BSP properties and alternative surgical applications.


Assuntos
Fístula Anastomótica/prevenção & controle , Materiais Biocompatíveis/administração & dosagem , Ceco/cirurgia , Procedimentos Cirúrgicos do Sistema Digestório/métodos , Polímeros/administração & dosagem , Adesivos Teciduais/administração & dosagem , Anastomose Cirúrgica/métodos , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Suínos
14.
ACS Appl Mater Interfaces ; 8(51): 34951-34963, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27966857

RESUMO

Solution blow spinning (SBS) is a technique that can be used to deposit fibers in situ at low cost for a variety of applications, which include biomedical materials and flexible electronics. This review is intended to provide an overview of the basic principles and applications of SBS. We first describe a method for creating a spinnable polymer solution and stable polymer solution jet by manipulating parameters such as polymer concentration and gas pressure. This method is based on fundamental insights, theoretical models, and empirical studies. We then discuss the unique bundled morphology and mechanical properties of fiber mats produced by SBS, and how they compare with electrospun fiber mats. Applications of SBS in biomedical engineering are highlighted, showing enhanced cell infiltration and proliferation versus electrospun fiber scaffolds and in situ deposition of biodegradable polymers. We also discuss the impact of SBS in applications involving textiles and electronics, including ceramic fibers and conductive composite materials. Strategies for future research are presented that take advantage of direct and rapid polymer deposition via cost-effective methods.

15.
Adv Mater ; 27(48): 8056-61, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26554545

RESUMO

The development of practical and efficient surgical sealants has the propensity to improve operational outcomes. A biodegradable polymer blend is fabricated as a nonwoven fiber mat in situ. After direct deposition onto the tissue of interest, the material transitions from a fiber mat to a film. This transition promotes polymer-substrate interfacial interactions leading to improved adhesion and surgical sealant performance.


Assuntos
Adesivos/farmacologia , Materiais Biocompatíveis/farmacologia , Temperatura Corporal , Polímeros/farmacologia , Equipamentos Cirúrgicos , Adesivos/química , Adesivos/metabolismo , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Ácido Láctico/química , Camundongos , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Polímeros/metabolismo
16.
J Phys Chem B ; 119(41): 13134-41, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26390264

RESUMO

Ethanol is widely used as an additive to gasoline, and production of ethanol can come from single-celled organisms such as yeast. We systematically studied the influence of ethanol on common lipids found in yeast plasma membranes, specifically phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). Molecular dynamics simulations were used to probe changes to the biophysical properties of membranes with varying equilibrated bulk ethanol concentrations less than 25 mol %. The palmitoyl oleoyl (PO, 18:1/16:0) chain was used for all lipids, and a mixed bilayer of POPE/POPS (7:3 ratio) was also simulated. Ethanol was found to interact strongly with POPC, and thus its surface area per lipid, chain order, and electron density profiles differ the most from the neat bilayer. At 12 mol % ethanol in the bulk, ethanol penetrated into the hydrophobic core for all membranes studied, but POPC had the highest penetration. Although the anionic headgroup of POPS acted as a protectant for membrane structure compared to the zwitterionic lipids, this was not the case for the POPE/POPS mixture that showed more penetration of ethanol into the membrane than the single-component membranes. To fully characterize the impact of ethanol on yeast plasma membranes, our results suggest that experiments and simulations need to consider representative mixtures of lipids that exist in vivo.


Assuntos
Membrana Celular/efeitos dos fármacos , Etanol/farmacologia , Bicamadas Lipídicas , Fenômenos Biofísicos , Membrana Celular/química , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...