Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7197, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169038

RESUMO

Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1, SWS1, and SPIDR. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single-molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter Shu complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.


Assuntos
DNA de Cadeia Simples , Rad51 Recombinase , Proteína de Replicação A , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Humanos , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Reparo do DNA , Ligação Proteica , Recombinação Homóloga , Imagem Individual de Molécula , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética
2.
ACS Chem Biol ; 18(10): 2176-2182, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37326511

RESUMO

The structure and mechanism of the bacterial enzyme ß-lactamase have been well-studied due to its clinical role in antibiotic resistance. ß-Lactamase is known to hydrolyze the ß-lactam ring of the cephalosporin scaffold, allowing a spontaneous self-immolation to occur. Previously, cephalosporin-based sensors have been developed to evaluate ß-lactamase expression in both mammalian cells and zebrafish embryos. Here, we present a circular caged morpholino oligonucleotide (cMO) activated by ß-lactamase-mediated cleavage of a cephalosporin motif capable of silencing the expression of T-box transcription factor Ta (tbxta), also referred to as no tail a (ntla), eliciting a distinct, observable phenotype. We explore the use of ß-lactamase to elicit a biological response in aquatic embryos for the first time and expand the utility of cephalosporin as a cleavable linker beyond targeting antibiotic-resistant bacteria. The addition of ß-lactamase to the current suite of enzymatic triggers presents unique opportunities for robust, orthogonal control over endogenous gene expression in a spatially resolved manner.


Assuntos
Oligonucleotídeos Antissenso , Peixe-Zebra , Animais , Oligonucleotídeos Antissenso/farmacologia , Peixe-Zebra/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Cefalosporinas/metabolismo , beta-Lactamases/metabolismo , Bactérias/metabolismo , Resistência Microbiana a Medicamentos , Expressão Gênica , Inibidores de beta-Lactamases , Testes de Sensibilidade Microbiana , Mamíferos/genética , Mamíferos/metabolismo
3.
Chem Soc Rev ; 50(23): 13253-13267, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34739027

RESUMO

Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and in vivo models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level.


Assuntos
Ácidos Nucleicos , Expressão Gênica , Luz , Oligonucleotídeos , Proteínas/genética
4.
ACS Chem Biol ; 16(11): 2434-2443, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609839

RESUMO

Rapamycin-induced dimerization of FKBP and FRB is the most commonly utilized chemically induced protein dimerization system. It has been extensively used to conditionally control protein localization, split-enzyme activity, and protein-protein interactions in general by simply fusing FKBP and FRB to proteins of interest. We have developed a new aminonitrobiphenylethyl caging group and applied it to the generation of a caged rapamycin analog that can be photoactivated using blue light. Importantly, the caged rapamycin analog shows minimal background activity with regard to protein dimerization and can be directly interfaced with a wide range of established (and often commercially available) FKBP/FRB systems. We have successfully demonstrated its applicability to the optical control of enzymatic function, protein stability, and protein subcellular localization. Further, we also showcased its applicability toward optical regulation of cell signaling, specifically mTOR signaling, in cells and aquatic embryos.


Assuntos
Luz , Proteínas/metabolismo , Sirolimo/análogos & derivados , Peixe-Zebra/embriologia , Animais , Dimerização , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Sirolimo/efeitos da radiação , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA