Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775063

RESUMO

Blood is a highly complex fluid with rheological properties that have a significant impact on various flow phenomena. In particular, it exhibits a non-Newtonian elongational viscosity that is comparable to polymer solutions. In this study, we investigate the effect of three different anticoagulants, namely EDTA (ethylene diamine tetraacetic acid), heparin, and citrate, on the elongational properties of both human and swine blood. We observe a unique two stage thinning process and a strong dependency of the characteristic relaxation time on the chosen anticoagulant, with the longest relaxation time and thus the highest elongational viscosity being found for the case of citrate. Our findings for the latter are consistent with the physiological values obtained from a dripping droplet of human blood without any anticoagulant. Furthermore, our study resolves the discrepancy found in the literature regarding the reported range of characteristic relaxation times, confirming that the elongational viscosity must be taken into account for a full rheological characterization of blood. These results have important implications for understanding blood flow in various physiological, pathological and technological conditions.

2.
Biomicrofluidics ; 18(2): 024104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38577010

RESUMO

The ability to change shape is essential for the proper functioning of red blood cells (RBCs) within the microvasculature. The shape of RBCs significantly influences blood flow and has been employed in microfluidic lab-on-a-chip devices, serving as a diagnostic biomarker for specific pathologies and enabling the assessment of RBC deformability. While external flow conditions, such as the vessel size and the flow velocity, are known to impact microscale RBC flow, our comprehensive understanding of how their shape-adapting ability is influenced by channel confinement in biomedical applications remains incomplete. This study explores the impact of various rectangular and square channels, each with different confinement and aspect ratios, on the in vitro RBC flow behavior and characteristic shapes. We demonstrate that rectangular microchannels, with a height similar to the RBC diameter in combination with a confinement ratio exceeding 0.9, are required to generate distinctive well-defined croissant and slipper-like RBC shapes. These shapes are characterized by their equilibrium positions in the channel cross section, and we observe a strong elongation of both stable shapes in response to the shear rate across the different channels. Less confined channel configurations lead to the emergence of unstable other shape types that display rich shape dynamics. Our work establishes an experimental framework to understand the influence of channel size on the single-cell flow behavior of RBCs, providing valuable insights for the design of biomicrofluidic single-cell analysis applications.

3.
Am J Hematol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622808

RESUMO

We investigated highlanders, permanently living at an altitude of 5100 m and compared Chronic Mountain Sickness (CMS) patients with control volunteers. While we found differences in systemic parameters such as blood oxygen content, hematocrit, hemoglobin concentration, and blood viscosity, the mechanical and rheological properties of single red blood cells did not differ between the two investigated groups.

4.
PNAS Nexus ; 3(1): pgad416, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145245

RESUMO

Erythrocyte sedimentation rate (ESR) is a clinical parameter used as a nonspecific marker for inflammation, and recent studies have shown that it is linked to the collapse of the gel formed by red blood cells (RBCs) at physiological hematocrits (i.e. RBC volume fraction). Previous research has suggested that the observation of a slower initial dynamics is related to the formation of fractures in the gel. Moreover, RBC gels present specific properties due to the anisotropic shape and flexibility of the RBCs. Namely, the onset of the collapse is reached earlier and the settling velocity of the gel increases with increasing attraction between the RBCs, while the gel of spherical particles shows the opposite trend. Here, we report experimental observations of the gel structure during the onset of the collapse. We suggest an equation modeling this initial process as fracturing of the gel. We demonstrate that this equation provides a model for the motion of the interface between blood plasma and the RBC gel, along the whole time span. We also observe that the increase in the attraction between the RBCs modifies the density of fractures in the gel, which explains why the gel displays an earlier onset when the aggregation energy between the RBCs increases. Our work uncovers the detailed physical mechanism underlying the ESR and provides insights into the fracture dynamics of an RBC gel. These results can improve the accuracy of clinical measurements.

5.
J Gen Physiol ; 155(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37801066

RESUMO

PIEZO1 channels are mechanically activated cation channels that play a pivotal role in sensing mechanical forces in various cell types. Their dysfunction has been associated with numerous pathophysiological states, including generalized lymphatic dysplasia, varicose vein disease, and hereditary xerocytosis. Given their physiological relevance, investigating PIEZO1 is crucial for the pharmaceutical industry, which requires scalable techniques to allow for drug discovery. In this regard, several studies have used high-throughput automated patch clamp (APC) combined with Yoda1, a specific gating modifier of PIEZO1 channels, to explore the function and properties of PIEZO1 in heterologous expression systems, as well as in primary cells. However, a combination of solely mechanical stimulation (M-Stim) and high-throughput APC has not yet been available for the study of PIEZO1 channels. Here, we show that optimization of pipetting parameters of the SyncroPatch 384 coupled with multihole NPC-384 chips enables M-Stim of PIEZO1 channels in high-throughput electrophysiology. We used this approach to explore differences between the response of mouse and human PIEZO1 channels to mechanical and/or chemical stimuli. Our results suggest that applying solutions on top of the cells at elevated pipetting flows is crucial for activating PIEZO1 channels by M-Stim on the SyncroPatch 384. The possibility of comparing and combining mechanical and chemical stimulation in a high-throughput patch clamp assay facilitates investigations on PIEZO1 channels and thereby provides an important experimental tool for drug development.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Humanos , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Ensaios de Triagem em Larga Escala , Eletrofisiologia
6.
Soft Matter ; 19(33): 6255-6266, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37522517

RESUMO

Bifurcations and branches in the microcirculation dramatically affect blood flow as they determine the spatiotemporal organization of red blood cells (RBCs). Such changes in vessel geometries can further influence the formation of a cell-free layer (CFL) close to the vessel walls. Biophysical cell properties, such as their deformability, which is impaired in various diseases, are often thought to impact blood flow and affect the distribution of flowing RBCs. This study investigates the flow behavior of healthy and artificially hardened RBCs in a bifurcating microfluidic T-junction. We determine the RBC distribution across the channel width at multiple positions before and after the bifurcation. Thus, we reveal distinct focusing profiles in the feeding mother channel for rigid and healthy RBCs that dramatically impact the cell organization in the successive daughter channels. Moreover, we experimentally show how the characteristic asymmetric CFLs in the daughter vessels develop along their flow direction. Complimentary numerical simulations indicate that the buildup of the CFL is faster for healthy than for rigid RBCs. Our results provide fundamental knowledge to understand the partitioning of rigid RBC as a model of cells with pathologically impaired deformability in complex in vitro networks.


Assuntos
Eritrócitos , Microfluídica , Eritrócitos/fisiologia , Microcirculação/fisiologia , Deformação Eritrocítica
7.
Cells ; 12(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37296651

RESUMO

Blood flow in the microcirculatory system is crucially affected by intrinsic red blood cell (RBC) properties, such as their deformability. In the smallest vessels of this network, RBCs adapt their shapes to the flow conditions. Although it is known that the age of RBCs modifies their physical properties, such as increased cytosol viscosity and altered viscoelastic membrane properties, the evolution of their shape-adapting abilities during senescence remains unclear. In this study, we investigated the effect of RBC properties on the microcapillary in vitro flow behavior and their characteristic shapes in microfluidic channels. For this, we fractioned RBCs from healthy donors according to their age. Moreover, the membranes of fresh RBCs were chemically rigidified using diamide to study the effect of isolated graded-membrane rigidity. Our results show that a fraction of stable, asymmetric, off-centered slipper-like cells at high velocities decreases with increasing age or diamide concentration. However, while old cells form an enhanced number of stable symmetric croissants at the channel centerline, this shape class is suppressed for purely rigidified cells with diamide. Our study provides further knowledge about the distinct effects of age-related changes of intrinsic cell properties on the single-cell flow behavior of RBCs in confined flows due to inter-cellular age-related cell heterogeneity.


Assuntos
Diamida , Deformação Eritrocítica , Deformação Eritrocítica/fisiologia , Microcirculação , Diamida/farmacologia , Eritrócitos , Microfluídica
8.
J Vis Exp ; (193)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37036231

RESUMO

Erythrocyte (or red blood cell) sedimentation rate (ESR) is a physical derived parameter of blood which is often used in routine health checks and medical diagnosis. For instance, in the case of inflammation, a higher ESR is observed due to the associated increase in fibrinogen and other plasma proteins. It was believed that this increase was due to the formation of larger aggregates of red blood cells (RBCs) caused by the increase in fibrinogen. Indeed, fibrinogen is an agent-fostering aggregation of RBCs and in the Stokes regime-assumed to be observed in blood-larger aggregates sediment faster. However, all models of ESR measurements based on this hypothesis require further specific physical assumptions, not required in any other system. Besides, modern studies in the field of colloidal suspensions have established that attractive particles form percolating aggregates (i.e. aggregates as wide as the container). The sedimentation of these colloids then follows a so-called "colloidal gel collapse". Recently, it has been shown that RBCs actually follow the same behavior. This hypothesis also allows to efficiently and analytically model the sedimentation curve of RBCs, from which robust and physically-meaningful descriptors can be extracted. This manuscript describes how to perform such an analysis, and discusses the benefits of this approach.


Assuntos
Agregação Eritrocítica , Hemostáticos , Sedimentação Sanguínea , Fibrinogênio , Eritrócitos/química , Física
9.
Biophys J ; 122(8): 1526-1537, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36932676

RESUMO

The distribution of red blood cells (RBCs) in the microcirculation determines the oxygen delivery and solute transport to tissues. This process relies on the partitioning of RBCs at successive bifurcations throughout the microvascular network, and it has been known since the last century that RBCs partition disproportionately to the fractional blood flow rate, therefore leading to heterogeneity of the hematocrit (i.e., volume fraction of RBCs in blood) in microvessels. Usually, downstream of a microvascular bifurcation, the vessel branch with a higher fraction of blood flow receives an even higher fraction of RBC flux. However, both temporal and time-average deviations from this phase-separation law have been observed in recent studies. Here, we quantify how the microscopic behavior of RBC lingering (i.e., RBCs temporarily residing near the bifurcation apex with diminished velocity) influences their partitioning, through combined in vivo experiments and in silico simulations. We developed an approach to quantify the cell lingering at highly confined capillary-level bifurcations and demonstrate that it correlates with deviations of the phase-separation process from established empirical predictions by Pries et al. Furthermore, we shed light on how the bifurcation geometry and cell membrane rigidity can affect the lingering behavior of RBCs; e.g., rigid cells tend to linger less than softer ones. Taken together, RBC lingering is an important mechanism that should be considered when studying how abnormal RBC rigidity in diseases such as malaria and sickle-cell disease could hinder the microcirculatory blood flow or how the vascular networks are altered under pathological conditions (e.g., thrombosis, tumors, aneurysm).


Assuntos
Eritrócitos , Modelos Cardiovasculares , Hematócrito , Microcirculação/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
10.
Phys Rev E ; 105(2-1): 024610, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291110

RESUMO

The erythrocyte (or red blood cell) sedimentation rate (ESR) is commonly interpreted as a measure of cell aggregation and as a biomarker of inflammation. It is well known that an increase of fibrinogen concentration, an aggregation-inducing protein for erythrocytes, leads to an increase of the sedimentation rate of erythrocytes, which is generally explained through the formation and faster settling of large disjoint aggregates. However, many aspects of erythrocyte sedimentation conform well with the collapse of a particle gel rather than with the sedimentation of disjoint aggregates. Using experiments and cell-level numerical simulations, we systematically investigate the dependence of ESR on fibrinogen concentration and its relation to the microstructure of the gel-like erythrocyte suspension. We show that for physiological aggregation interactions, an increase in the attraction strength between cells results in a cell network with larger void spaces. This geometrical change in the network structure occurs due to anisotropic shape and deformability of erythrocytes and leads to an increased gel permeability and faster sedimentation. Our results provide a comprehensive relation between the ESR and the cell-level structure of erythrocyte suspensions and support the gel hypothesis in the interpretation of blood sedimentation.

11.
Phys Rev Lett ; 128(8): 088101, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275655

RESUMO

The erythrocyte sedimentation rate is one of the oldest medical diagnostic methods whose physical mechanisms remain debatable today. Using both light microscopy and mesoscale cell-level simulations, we show that erythrocytes form a soft-particle gel. Furthermore, the high volume fraction of erythrocytes, their deformability, and weak attraction lead to unusual properties of this gel. A theoretical model for the gravitational collapse is developed, whose predictions are in agreement with detailed macroscopic measurements of the interface velocity.


Assuntos
Eritrócitos , Modelos Teóricos , Sedimentação Sanguínea
13.
Biomolecules ; 11(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066168

RESUMO

BACKGROUND: Chorea-acanthocytosis (ChAc) is a rare hereditary neurodegenerative disease with deformed red blood cells (RBCs), so-called acanthocytes, as a typical marker of the disease. Erythrocyte sedimentation rate (ESR) was recently proposed as a diagnostic biomarker. To date, there is no treatment option for affected patients, but promising therapy candidates, such as dasatinib, a Lyn-kinase inhibitor, have been identified. METHODS: RBCs of two ChAc patients during and after dasatinib treatment were characterized by the ESR, clinical hematology parameters and the 3D shape classification in stasis based on an artificial neural network. Furthermore, mathematical modeling was performed to understand the contribution of cell morphology and cell rigidity to the ESR. Microfluidic measurements were used to compare the RBC rigidity between ChAc patients and healthy controls. RESULTS: The mechano-morphological characterization of RBCs from two ChAc patients in an off-label treatment with dasatinib revealed differences in the ESR and the acanthocyte count during and after the treatment period, which could not directly be related to each other. Clinical hematology parameters were in the normal range. Mathematical modeling indicated that RBC rigidity is more important for delayed ESR than cell shape. Microfluidic experiments confirmed a higher rigidity in the normocytes of ChAc patients compared to healthy controls. CONCLUSIONS: The results increase our understanding of the role of acanthocytes and their associated properties in the ESR, but the data are too sparse to answer the question of whether the ESR is a suitable biomarker for treatment success, whereas a correlation between hematological and neuronal phenotype is still subject to verification.


Assuntos
Acantócitos/efeitos dos fármacos , Biomarcadores/sangue , Sedimentação Sanguínea/efeitos dos fármacos , Dasatinibe/uso terapêutico , Eritrócitos/efeitos dos fármacos , Neuroacantocitose/tratamento farmacológico , Acantócitos/patologia , Adulto , Forma Celular/efeitos dos fármacos , Humanos , Masculino , Neuroacantocitose/sangue , Neuroacantocitose/patologia , Uso Off-Label , Inibidores de Proteínas Quinases/uso terapêutico
14.
Cells ; 10(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918219

RESUMO

(1) Background: Chorea-acanthocytosis and McLeod syndrome are the core diseases among the group of rare neurodegenerative disorders called neuroacanthocytosis syndromes (NASs). NAS patients have a variable number of irregularly spiky erythrocytes, so-called acanthocytes. Their detection is a crucial but error-prone parameter in the diagnosis of NASs, often leading to misdiagnoses. (2) Methods: We measured the standard Westergren erythrocyte sedimentation rate (ESR) of various blood samples from NAS patients and healthy controls. Furthermore, we manipulated the ESR by swapping the erythrocytes and plasma of different individuals, as well as replacing plasma with dextran. These measurements were complemented by clinical laboratory data and single-cell adhesion force measurements. Additionally, we followed theoretical modeling approaches. (3) Results: We show that the acanthocyte sedimentation rate (ASR) with a two-hour read-out is significantly prolonged in chorea-acanthocytosis and McLeod syndrome without overlap compared to the ESR of the controls. Mechanistically, through modern colloidal physics, we show that acanthocyte aggregation and plasma fibrinogen levels slow down the sedimentation. Moreover, the inverse of ASR correlates with the number of acanthocytes (R2=0.61, p=0.004). (4) Conclusions: The ASR/ESR is a clear, robust and easily obtainable diagnostic marker. Independently of NASs, we also regard this study as a hallmark of the physical view of erythrocyte sedimentation by describing anticoagulated blood in stasis as a percolating gel, allowing the application of colloidal physics theory.


Assuntos
Acantócitos/patologia , Biomarcadores/sangue , Sedimentação Sanguínea , Neuroacantocitose/sangue , Neuroacantocitose/diagnóstico , Estudos de Casos e Controles , Humanos , Síndrome
15.
Front Physiol ; 12: 729191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153805

RESUMO

The erythrocyte sedimentation rate (ESR) is one of the oldest medical diagnostic tools. However, currently there is some debate on the structure formed by the cells during the sedimentation process. While the conventional view is that erythrocytes sediment as separate aggregates, others have suggested that they form a percolating gel, similar to other colloidal suspensions. However, visualization of aggregated erythrocytes, which would settle the question, has always been challenging. Direct methods usually study erythrocytes in 2D situations or low hematocrit (∼1%). Indirect methods, such as scattering or electric measurements, provide insight on the suspension evolution, but cannot directly discriminate between open or percolating structures. Here, we achieved a direct probing of the structures formed by erythrocytes in blood at stasis. We focused on blood samples at rest with controlled hematocrit of 45%, from healthy donors, and report observations from three different optical imaging techniques: direct light transmission through thin samples, two-photon microscopy and light-sheet microscopy. The three techniques, used in geometries with thickness from 150 µm to 3 mm, highlight that erythrocytes form a continuous network with characteristic cracks, i.e., a colloidal gel. The characteristic distance between the main cracks is of the order of ∼100 µm. A complete description of the structure then requires a field of view of the order of ∼1 mm, in order to obtain a statistically relevant number of structural elements. A quantitative analysis of the erythrocyte related processes and interactions during the sedimentation need a further refinement of the experimental set-ups.

16.
Phys Rev E ; 93(5): 053117, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27300988

RESUMO

When ferromagnetic particles are suspended at an interface under magnetic fields, dipole-dipole interactions compete with capillary attraction. This combination of forces has recently given promising results towards controllable self-assemblies as well as low-Reynolds-number swimming systems. The elementary unit of these assemblies is a pair of particles. Although equilibrium properties of this interaction are well described, the dynamics remain unclear. In this paper, the properties of magnetocapillary bonds are determined by probing them with magnetic perturbations. Two deformation modes are evidenced and discussed. These modes exhibit resonances whose frequencies can be detuned to generate nonreciprocal motion. A model is proposed that can become the basis for elaborate collective behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...