RESUMO
Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the "knock-down resistance" V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed.
Assuntos
Aedes/enzimologia , Dengue/parasitologia , Meio Ambiente , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Nitrilas/toxicidade , Piretrinas/toxicidade , Temefós/toxicidade , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Aedes/efeitos dos fármacos , Aedes/genética , Envelhecimento/efeitos dos fármacos , Animais , Bioensaio , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes de Insetos/genética , Estudos de Associação Genética , Genótipo , Geografia , Insetos Vetores/enzimologia , Insetos Vetores/genética , Resistência a Inseticidas/genética , Larva/efeitos dos fármacos , Larva/genética , Martinica , Mutação/genética , Fenótipo , Dinâmica Populacional , Análise de Componente Principal , Padrões de Referência , Transcrição Gênica/efeitos dos fármacosRESUMO
BACKGROUND: Dengue fever is reemerging on the island of Martinique and is a serious threat for the human population. During dengue epidemics, adult Aedes aegypti control with pyrethroid space sprays is implemented in order to rapidly reduce transmission. Unfortunately, vector control programs are facing operational challenges with the emergence of pyrethroid resistant Ae. aegypti populations. METHODOLOGY/PRINCIPAL FINDINGS: To assess the impact of pyrethroid resistance on the efficacy of treatments, applications of deltamethrin and natural pyrethrins were performed with vehicle-mounted thermal foggers in 9 localities of Martinique, where Ae. aegypti populations are strongly resistant to pyrethroids. Efficacy was assessed by monitoring mortality rates of naturally resistant and laboratory susceptible mosquitoes placed in sentinel cages. Before, during and after spraying, larval and adult densities were estimated. Results showed high mortality rates of susceptible sentinel mosquitoes treated with deltamethrin while resistant mosquitoes exhibited very low mortality. There was no reduction of either larval or adult Ae. aegypti population densities after treatments. CONCLUSIONS/SIGNIFICANCE: This is the first documented evidence that pyrethroid resistance impedes dengue vector control using pyrethroid-based treatments. These results emphasize the need for alternative tools and strategies for dengue control programs.
Assuntos
Aedes/efeitos dos fármacos , Dengue/epidemiologia , Dengue/prevenção & controle , Resistência a Medicamentos , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Animais , Feminino , Humanos , Larva/efeitos dos fármacos , Martinica/epidemiologia , Nitrilas/farmacologia , Análise de SobrevidaRESUMO
World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations.
Assuntos
Aedes , Insetos Vetores , Resistência a Inseticidas , Inseticidas/normas , Controle de Mosquitos/métodos , Animais , Bioensaio , Dengue/prevenção & controle , Dengue/transmissão , Relação Dose-Resposta a Droga , Larva , MartinicaRESUMO
BACKGROUND: The resistance of Ae. aegypti to insecticides is already widespread and continues to develop. It represents a serious problem for programmes aimed at the control and prevention of dengue in tropical countries. In the light of this problem measures to control Ae. aegypti are being orientated towards how best to use existing insecticides, notably by combining those that have different modes of action. RESULTS: In this study we evaluated the operational efficiency of a mixture composed of pyriproxyfen (an insect growth regulator) and spinosad (a biopesticide) against a population of Ae. aegypti from Martinique resistant to pyrethroid and organophosphate insecticides. The first step consisted of evaluating the efficacy of pyriproxyfen and spinosad when used alone, or in combination, against Ae. aegypti larvae under simulated conditions. The results showed that the mixture of pyriproxyfen+spinosad remained active for at least 8 months, compared with 3 months for spinosad alone, and 5 months for pyriproxyfen alone. In a second step in containers experiencing natural conditions, pyriproxyfen and spinosad, maintained the rate of adult emergence at 20% for 3 weeks and 3.5 months, respectively. Following the same criteria of evaluation, the mixture pyriproxyfen+spinosad remained effective for 4.5 months, showing that the combination of the two larvicides with different modes of action acted to increase the residual activity of the treatment. CONCLUSION: The mixture of pyriproxyfen and spinosad kills larvae and pupae giving it a broader range of action than either insecticide. This mixture could preserve the utility of both insecticides in public health programs.
RESUMO
BACKGROUND: The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. RESULTS: The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. CONCLUSION: These results suggest that the high level of insecticide resistance found in Ae. aegypti mosquitoes from Martinique island is the consequence of both target-site and metabolic based resistance mechanisms. Insecticide resistance levels and associated mechanisms are discussed in relation with the environmental context of Martinique Island. These finding have important implications for dengue vector control in Martinique and emphasizes the need to develop new tools and strategies for maintaining an effective control of Aedes mosquito populations worldwide.
Assuntos
Aedes/genética , Insetos Vetores/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Aedes/efeitos dos fármacos , Aedes/enzimologia , Animais , Análise Mutacional de DNA , Genes de Insetos , Inativação Metabólica/genética , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/enzimologia , Inseticidas/farmacocinética , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Martinica , Controle de Mosquitos/métodos , Análise de Sequência com Séries de OligonucleotídeosRESUMO
In the Caribbean, insecticide resistance is widely developed in Aedes aegypti and represents a serious obstacle for dengue vector control. The efficacy of pyrethroid and organophosphate ultra-low volume space sprays was investigated in Martinique where Ae. aegypti has been shown to be resistant to conventional insecticides. In the laboratory, a wild-field caught population showed high levels of resistance to deltamethrin, organophosphate (naled), and pyrethrum. Simulated-field trials showed that this resistance can strongly reduce the knock-down effect and mortality of deltamethrin and synergized pyrethrins when applied by thermal-fogging. Conversely, the efficacy of naled was high against insecticide-resistant mosquitoes. Chemical analyses of nettings exposed to the treatments showed a decrease in residues over distance from release for the pyrethroids, and naled was not detected. This finding has important implications for dengue vector control and emphasizes the need to develop innovative strategies to maintain effective control of resistant Ae. aegypti populations.