Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(6): 4015-4023, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32114759

RESUMO

NaMoO2 was synthesized as a layered oxide from the reaction between the layered oxide Na2/3MoO2 and metal sodium. Its structure was determined from high-resolution powder X-ray diffraction, and it can be described as an α-NaFeO2 distorted structure in which sodium ions and molybdenum atoms occupy octahedral interstitial sites. Chains of "diamond-like" clusters of molybdenum were evidenced in the [MoO2] layers resulting from the Peierls distortion expected in a two-dimensional triangular lattice formed by transition metal atoms with a d3 electronic configuration. Molybdenum-molybdenum distances as short as 2.58 Å were found in these clusters. The magnetic moment recorded at low temperatures and at room temperature showed that NaMoO2 presents a very low magnetic susceptibility compatible with the localization of the 4d electrons in the Mo-Mo bonds. This localization was confirmed by DFT calculation that showed the NaMoO2 was diamagnetic at 0 K. A sodium battery was built using NaMoO2 as the positive electrode material, and we found that sodium ions can be reversibly deintercalated and intercalated in NaMoO2, indicating that this compound is one of the many phases existing in the NaxMoO2 system.

2.
Nat Mater ; 12(1): 74-80, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142842

RESUMO

Layered oxides are the subject of intense studies either for their properties as electrode materials for high-energy batteries or for their original physical properties due to the strong electronic correlations resulting from their unique structure. Here we present the detailed phase diagram of the layered P2-Na(x)VO(2) system determined from electrochemical intercalation/deintercalation in sodium batteries and in situ X-ray diffraction experiments. It shows that four main single-phase domains exist within the 0.5≤x≤0.9 range. During the sodium deintercalation (intercalation), they differ from one another in the sodium/vacancy ordering between the VO(2) slabs, which leads to commensurable or incommensurable superstructures. The electrochemical curve reveals that three peculiar compositions exhibit special structures for x = 1/2, 5/8 and 2/3. The detailed structural characterization of the P2-Na(1/2)VO(2) phase shows that the Na(+) ions are perfectly ordered to minimize Na(+)/Na(+) electrostatic repulsions. Within the VO(2) layers, the vanadium ions form pseudo-trimers with very short V-V distances (two at 2.581 Å and one at 2.687 Å). This original distribution leads to a peculiar magnetic behaviour with a low magnetic susceptibility and an unexpected low Curie constant. This phase also presents a first-order structural transition above room temperature accompanied by magnetic and electronic transitions. This work opens up a new research domain in the field of strongly electron-correlated materials. From the electrochemical point of view this system may be at the origin of an entire material family optimized by cationic substitutions.

3.
Inorg Chem ; 51(20): 11007-16, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23009092

RESUMO

The electrochemical cycling in a sodium battery of the lamellar oxide NaVO(2) is reversible in the Na(x)VO(2) composition range 1/2 ≤ x ≤ 1. The complex electrochemical curve reveals the presence of several transitions taking place during deintercalation. With the help of in situ X-ray diffraction, we observed the structural transitions taking place between Na(2/3)VO(2) and Na(1/2)VO(2). The diffractograms show the presence of several monophasic domains separated by biphasic domains. All phases present a monoclinic distortion of the α-NaFeO(2) structure in the composition range 1/2 ≤ x ≤ 2/3. Moreover the presence of a superstructure is evidenced for Na(1/2)VO(2). It is the first time that an ordered structure is reported at the Na(1/2)MO(2) composition with an O'3 oxygen stacking. A thorough investigation of electrochemically obtained O'3-Na(1/2)VO(2) was performed. The structure refinement reveals the existence of a sodium/vacancy ordering, with a peculiar arrangement of the V-V distances hinting at a pairing of vanadium atoms. Our first measurements of the physical properties of O'3-Na(1/2)VO(2) show a semiconductor behavior and a complex thermal dependence of the magnetic susceptibility related to the pairing of the vanadium atoms.

4.
J Am Chem Soc ; 133(51): 20981-94, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22141593

RESUMO

In this paper we report the crystal growth, structure determination, and magnetic properties of the 2H-perovskite related oxides, Sr(5)Co(4)O(12) and Sr(6)Co(5)O(15), as well as the charge disproportionation and associated phase transition of Sr(5)Co(4)O(12). Sr(5)Co(4)O(12) and Sr(6)Co(5)O(15) are the (m = 2, n = 3) and (m = 1, n = 1) members of the A(3m+3n)A'(n)B(3m+n)O(9m+6n) family, respectively. Sr(6)Co(5)O(15) crystallizes in the space group R32 with lattice parameters of a = 9.5020(10) Å and c = 12.379(8) Å. The structure solution shows that Sr(6)Co(5)O(15) is isostructural with Sr(6)Rh(5)O(15). Magnetic measurements do not indicate any long-range magnetic order, although the Weiss temperature of -248 K indicates the presence of dominant antiferromagnetic interactions. Sr(5)Co(4)O(12) crystallizes in the space group P-3c1 with lattice parameters of a = 9.4705(10) Å and c = 20.063(5) Å at room temperature. The single crystal structure solution revealed that the cobalt ions in the trigonal prismatic sites of Sr(5)Co(4)O(12) undergo a structural transition at ~170 K, where the cobalt atoms are in the center of the trigonal prisms below this temperature and move partially toward the faces above this temperature. This structure transition is accompanied by a change in the magnetic moment of the oxide and can be related to a valence disproportionation of the cobalt ions and a concomitant Jahn-Teller distortion. In addition, specific heat, Seebeck coefficient, electric conductivity, and magnetic measurements as well as bond valence sum calculations were carried out for Sr(5)Co(4)O(12). Sr(5)Co(4)O(12) exhibits strong magnetic anisotropy but no long-range magnetic order.

5.
Inorg Chem ; 49(18): 8578-82, 2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20731409

RESUMO

A new ternary manganese vanadate, NaMnVO(4), was synthesized by solid state reaction route, and its crystal structure and magnetic properties were characterized by X-ray diffraction, magnetic susceptibility and specific heat measurements, and by density functional calculations. NaMnVO(4) crystallizes in the maricite-type structure with space group Pnma, a = 9.563(1) A, b = 6.882(1) A, c = 5.316(1) A, and Z = 4. NaMnVO(4) contains MnO(4) chains made up of edge-sharing MnO(6) octahedra, and these chains are interlinked by VO(4) tetrahedra. The magnetic susceptibility has a broad maximum at T(max) = 24 K and follows the Curie-Weiss behavior above 70 K with θ = -62 K. NaMnVO(4) undergoes a three-dimensional antiferromagnetic ordering at T(N) = 11.8 K. The spin exchanges of NaMnVO(4) are dominated by the intrachain antiferromagnetic exchange, and the interchain spin exchanges are spin-frustrated. The most probable magnetic structure of the ordered magnetic state below T(N) was predicted on the basis of the extracted spin exchanges.

6.
Inorg Chem ; 49(12): 5603-10, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20540567

RESUMO

A new solid solution Pb(3-x)Bi(2x/3)V(2)O(8) (0.20 < or = x < or = 0.50), stabilizing the high-temperature gamma form of Pb(3)V(2)O(8), has been isolated in the system Pb(3)V(2)O(8)-BiVO(4). The single-crystal structure of the composition x = 0.50 (Pb(2.5)Bi(1/3)V(2)O(8)) was solved using single-crystal X-ray diffraction (XRD) technique. The compound crystallizes in the trigonal crystal system R3m (No. 166) with a palmierite structural type with a = 5.7463(3) A, c = 20.3047(12) A, V = 580.64(5) A(3), and Z = 3. The final R1 value of 0.0406 was achieved for 217 independent reflections during the structure refinement. The variable-temperature powder XRD shows the absence of any phase transition for all of the members of the solid solution in the limit of 398-80 K. The new solid solution has been characterized by neutron powder diffraction, solid-state UV-vis diffuse-reflectance spectra, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). Alternating-current impedance studies indicate conductivity on the order of 10(-4) Omega(-1) cm(-1) for Pb(2.5)Bi(1/3)V(2)O(8). The change in color of the samples from brown to yellow at high temperature was explained by XPS studies, which indicate the plausible formation of the ppm level of Bi(2)O(3) at such elevated temperature ranges.

7.
Inorg Chem ; 48(19): 9147-54, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19780614

RESUMO

A new layered phase Na(0.60)VO(2) was synthesized by chemical deintercalation of sodium from the pristine compound O3-NaVO(2). The Na(0.60)VO(2) compound exhibits a distorted P'3-type oxygen stacking (AABBCC) with an average monoclinic unit cell containing a = 4.9862(14) A, b = 2.8708(8) A, c = 5.917(2) A, and beta = 104.36(3) degrees. A modulated structure was observed by transmission electron microscopy and X-ray diffraction (XRD) measurements. Indexation of the XRD pattern was achieved by using the q vector equal to 0.44b*, and the 4D superspace group C2/m (0 beta 0) s0 was then deduced. The specific heat measurement showed a strong correlated system with a gamma value of around 20 mJ x mol(-1) x K(-2). The electrical conductivity shows a semiconductor-like behavior with an activation energy of 0.52 eV. A paramagnetic behavior of the susceptibility is observed below room temperature with a Curie constant equal to C = 0.076 emu x K(-1) x mol(-1) x Oe(-1). To explain this small value, a model of pseudotriangular clusters of vanadium with a random distribution of V(3+) and V(4+) was considered.

8.
Inorg Chem ; 45(14): 5501-9, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16813413

RESUMO

The crystal structure of the low-temperature form of AgCuPO4 (i.e., alpha-AgCuPO4) was determined by powder X-ray diffraction and was compared with that of the high-temperature form of AgCuPO4 (i.e., beta-AgCuPO4). The magnetic properties of the two forms were examined by measuring their magnetic susceptibilities and evaluating the relative strengths of their spin-exchange interactions on the basis of spin-dimer analysis. Both forms of AgCuPO4 have layers of Cu2P2O8 alternating with silver-atom double layers; beta-AgCuPO4 has two Cu2P2O8 layers per unit cell, while alpha-AgCuPO4 has one. The coordinate environment of each Cu2+ ion is close to being a distorted square pyramid in alpha-AgCuPO4, but it is close to being a distorted trigonal bipyramid in beta-AgCuPO4. The magnetic susceptibilities of alpha- and beta-AgCuPO4 are well simulated by an antiferromagnetic alternating-chain model, which leads to J/k(B) = -146.1 K and alphaJ/k(B) = -75.8 K for alpha-AgCuPO4, and J/k(B) = -82.6 K and alphaJ/k(B) = -31.7 K for beta-AgCuPO4 (with the convention in which the spin-exchange parameter between two adjacent spin sites is written as 2J). The spin gaps, delta/k(B), obtained from these parameters are 93.7 K for alpha-AgCuPO4 and 62.3 K for beta-AgCuPO4. The strongest spin exchange in both forms of AgCuPO4 comes from a super-superexchange path, and this interaction is stronger for alpha-AgCuPO4 than for beta-AgCuPO4 by a factor of approximately 2, in good agreement with the experiment. Our analysis supports the use of this model for beta-AgCuPO4 and indicates that the spin lattice of alpha-AgCuPO4 would be better described by a two-dimensional net made up of weakly interacting alternating chains.

9.
Acta Crystallogr B ; 62(Pt 2): 197-204, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16552152

RESUMO

The structure of the compound Ba(1 + x)Ni(x)Rh(1 - x)O3 [x = 0.1170 (5)] has been analyzed at room temperature within the (3 + 1)-dimensional superspace approach using single-crystal X-ray diffraction data. Two different models are presented, the compound is refined as modulated composite as well as modulated-layer structure. In both models discontinuous atomic domains are applied to describe the structural modulations. While the first approach stresses the pseudo-one-dimensional constitution, the latter highlights the layered character of these structures.

10.
Inorg Chem ; 44(25): 9299-304, 2005 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-16323913

RESUMO

The layered P2-K4Co7O14 oxide has been prepared and characterized by means of X-ray diffraction, electrical conductivity, thermopower, and magnetic measurements. The crystal structure of K4Co7O14 (P6(3)/m space group, Z=2, a=7.5171(1) A, and c=12.371(1) A) consists of a stacking of slabs of edge-shared CoO6 octahedra with K+ ions occupying ordered positions in the interslab space, leading to a a0 radical7xa0 radical7 supercell. Potential energy calculations at 0 K are in good agreement with the ordered distribution of potassium ions in the (ab) plane. This oxide is metallic, and the magnetic susceptibility is of Pauli-type, which contrasts with the Curie-Weiss behavior of the homologous NaxCoO2 (x approximately 0.6) oxide with close alkali content. The thermopower at room temperature is about one-third that of polycrystalline Na0.6CoO2.

11.
Acta Crystallogr C ; 61(Pt 7): i79-80, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15997052

RESUMO

Single crystals of sodium tetracalcium trivanadium dodecaoxide were prepared by melting a powder sample of NaCa4(VO4)3 at 1673 K, followed by slow cooling to room temperature. The compound crystallizes in the Pnma space group and is isostructural with the mineral silicocarnotite, Ca5(PO4)2SiO4. The structure is composed of isolated VO4 tetrahedra linked by sodium and calcium cations disordered over eight- and seven-coordinated sites.

12.
Inorg Chem ; 44(9): 3087-93, 2005 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-15847413

RESUMO

A new magnetic oxide, CuMnVO4, was prepared, and its crystal structure was determined by single-crystal X-ray diffraction. The magnetic properties of CuMnVO4 were characterized by magnetic susceptibility and specific heat measurements, and the spin exchange interactions of CuMnVO4 were analyzed on the basis of spin-polarized electronic band structure calculations. CuMnVO4 contains MnO4 chains made up of edge-sharing MnO6 octahedra containing high-spin Mn2+ cations. Our work shows that CuMnVO4 undergoes a three-dimensional antiferromagnetic transition at approximately 20 K. Both the intrachain and interchain spin exchanges are antiferromagnetic, and the interchain spin exchange is not negligible compared to the intrachain spin exchange.

13.
Inorg Chem ; 43(4): 1214-6, 2004 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-14966953

RESUMO

The new oxide and oxyhydrate NaRuO2 and NaxRuO2.yH2O (x = 0.22, y = 0.45) have been characterized. NaRuO2 is isostructural with alpha-NaFeO2. The symmetry is rhombohedral (R3m space group) with lattice parameters of a = 3.018(2) A and c = 16.493(3) A. The structure has been refined by the Rietveld method. The oxyhydrate NaxRuO2.yH2O has been prepared by stirring a sample of NaRuO2 in water at ambient temperature. NaxRuO2.yH2O crystallizes in the space group R3m with lattice parameters of a = 2.930(2) A and c = 21.913(5) A. The structure is related to the CuFeO2 3R polytype structure with the AABBCC sequence of the oxygen close packed layers along the c-axis. Analogies with the related cobalt phases are discussed. The susceptibilities of NaRuO2 and NaxRuO2.yH2O are small and constant in a large temperature range.

14.
J Am Chem Soc ; 126(3): 856-64, 2004 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-14733561

RESUMO

Single crystals of two new barium rhodates were grown from a molten potassium carbonate flux. The new rhodates, Ba(11)Rh(10)O(30) and Ba(32)Rh(29)O(87), are structurally related to the 2H-hexagonal perovskite structure and are characterized by pseudo one-dimensional chains of alternating face-sharing trigonal prisms and octahedra. The structures of Ba(11)Rh(10)O(30) and Ba(32)Rh(29)O(87) were solved using the 4D superspace group approach in Jana2000. Ba(11)Rh(10)O(30), with a repeat of nine RhO(6) octahedra followed by one RhO(6) trigonal prism, contains the longest chain sequence of face-sharing octahedra known for this 2H-perovskite related family of oxides. A structural analysis of these two compounds revealed clear trends in metal-metal distances and octahedral heights not previously identified for this family of oxides. The application of these trends toward the structure of the all-octahedra-containing end member of the structural series, the hypothetical 2H-BaRhO(3), enabled a prediction of its rhodium-rhodium distance, octahedral height, and lattice parameters.

15.
Inorg Chem ; 43(1): 5-7, 2004 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-14704046

RESUMO

A new ternary ruthenium oxide Na(2)RuO(4) was prepared and shown to crystallize with a new structure type. Single crystal X-ray diffraction measurements reveal that Na(2)RuO(4) consists of RuO(4) chains made up of RuO(5) trigonal bipyramids by sharing axial corners. Na(2)RuO(4) is a magnetic semiconductor with a variable range hopping behavior, and its molar magnetic susceptibility chi(mol) has a broad maximum at approximately 74 K. The derivative d(chi(mol).T)/dT exhibits a peak at 37.7 K which has been confirmed by heat capacity measurement to be due to long-range antiferromagnetic ordering.

16.
Acta Crystallogr B ; 59(Pt 2): 217-33, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12657815

RESUMO

The structures of the trigonal compounds A(1+x)A(x')B(1-x)O(3) are described, to a first approximation, as a hexagonal close-packed stacking of A(3)O(9) and A(3)A'O(6) layers. However, quantitative analyses are usually performed in superspace, with the structures considered as modulated composites made of two subsystems: chains of A cations, and columns of trigonal prisms, A'O(6), and octahedra, BO(6). It is demonstrated that an alternative superspace description as a single modulated structure can be found in terms of the aforementioned layers, with a composition-dependent modulation parameter and discontinuous atomic domains. In this approach, these compounds fulfill layer-stacking rules analogous to those observed in other layered compounds. These rules translate into a so-called closeness condition for the discontinuous atomic domains in superspace; this condition is analogous to that postulated in quasicrystals. Both superspace models, the composite and the layered model, when considered without displacive modulations, can be taken as two limiting idealized paradigms and can be used as the starting point of a structure refinement. As an example, the structure of the trigonal phase Sr(6)Rh(5)O(15), which was previously refined as a modulated composite [Stitzer, El Abed et al. (2001), J. Am. Chem. Soc. 123, 8790-8796], has been refined anew, with equivalent results, as a single modulated structure taking as reference the ideal layered structure. A similar superspace layer description is applied to the recently reported orthorhombic family A(4m+4n)A(n')B(4m+2n)O(12m+9n). This description allows the a priori derivation of a refineable superspace model that includes the superspace symmetry and crenel functions and is valid for the whole family. This model has been successfully applied to the refinement of the compound Ba(12)Co(11)O(33) [Darriet et al. (2002), Chem. Mater. 14, 3349-3363].

17.
Inorg Chem ; 42(4): 947-9, 2003 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-12588124

RESUMO

Single crystals of two new osmium-containing triple perovskites, Ba(3)LiOs(2)O(9) and Ba(3)NaOs(2)O(9), were grown from reactive molten hydroxide fluxes in sealed silver tubes. They crystallize in the space group P6(3)/mmc with lattice parameters of a = 5.8025(1) A, c = 14.1468(4) A for Ba(3)LiOs(2)O(9) and a = 5.8858(1) A, c = 14.3451(5) A for Ba(3)NaOs(2)O(9). The magnetic susceptibility of these osmates indicates significant Os-Os coupling within the octahedra pair.

18.
Acta Crystallogr C ; 58(Pt 10): i138-40, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12359919

RESUMO

Single crystals of Sr(4)Mn(2.09)Cu(0.91)O(9) have been grown by flux synthesis and the structure, closely related to the hexagonal perovskite 2H, was solved from single-crystal X-ray data in space group P321. The structure of Sr(4)Mn(2)CuO(9) is composed of chains of face-sharing polyhedra with a sequence of two octahedra and one trigonal prism. The octahedra are filled by Mn atoms and the Cu atoms are randomly distributed at the centres of the square faces of the trigonal prism. A stacking fault is observed within one of the two chains, which can be attributed to a shifting of the chain along the c axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...