Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Chem Biol ; 3(10): 1230-1239, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36320893

RESUMO

Exchange proteins directly activated by cAMP (EPAC) are guanine nucleotide exchange factors for the small GTPases, Rap1 and Rap2. They regulate several physiological functions and mitigation of their activity has been suggested as a possible treatment for multiple diseases such as cardiomyopathy, diabetes, chronic pain, and cancer. Several EPAC-specific modulators have been developed, however studies that quantify their structure-activity relationships are still lacking. Here we propose a quantitative structure-activity relationship (QSAR) model for a series of EPAC-specific compounds. The model demonstrated high reproducibility and predictivity and the predictive ability of the model was tested against a series of compounds that were unknown to the model. The compound with the highest predicted affinity was validated experimentally through fluorescence-based competition assays and NMR experiments revealed its mode of binding and mechanism of action as a partial agonist. The proposed QSAR model can, therefore, serve as an effective screening tool to identify promising EPAC-selective drug leads with enhanced potency.

2.
ACS Infect Dis ; 8(1): 170-182, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34860493

RESUMO

Exposure of the Gram-negative pathogen Pseudomonas aeruginosa to subinhibitory concentrations of antibiotics increases the formation of biofilms. We exploited this phenotype to identify molecules with potential antimicrobial activity in a biofilm-based high-throughput screen. The anti-inflammatory compound BAY 11-7082 induced dose-dependent biofilm stimulation, indicative of antibacterial activity. We confirmed that BAY 11-7082 inhibits the growth of P. aeruginosa and other priority pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). We synthesized 27 structural analogues, including a series based on the related scaffold 3-(phenylsulfonyl)-2-pyrazinecarbonitrile (PSPC), 10 of which displayed increased anti-Staphylococcal activity. Because the parent molecule inhibits the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome, we measured the ability of select analogues to reduce interleukin-1ß (IL-1ß) production in mammalian macrophages, identifying minor differences in the structure-activity relationship for the anti-inflammatory and antibacterial properties of this scaffold. Although we could evolve stably resistant MRSA mutants with cross-resistance to BAY 11-7082 and PSPC, their lack of shared mutations suggested that the two molecules could have multiple targets. Finally, we showed that BAY 11-7082 and its analogues synergize with penicillin G against MRSA, suggesting that this scaffold may serve as an interesting starting point for the development of antibiotic adjuvants.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Nitrilas , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...