Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plant Physiol ; 167(4): 1296-306, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673778

RESUMO

Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactose/metabolismo , Galactosiltransferases/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Parede Celular/química , Galactosiltransferases/genética , Glucanos/química , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Mutação , Pectinas/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Polissacarídeos/metabolismo , Xilanos/química
3.
Plant Cell ; 25(1): 270-87, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23371948

RESUMO

Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.


Assuntos
Arabidopsis/química , Parede Celular/química , Mucoproteínas/química , Pectinas/química , Proteoglicanas/química , Xilanos/química , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Biomassa , Parede Celular/genética , Parede Celular/metabolismo , Epitopos , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Glicoproteínas/metabolismo , Modelos Estruturais , Dados de Sequência Molecular , Mucoproteínas/genética , Mucoproteínas/imunologia , Mucoproteínas/metabolismo , Mutação , Pectinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Isoformas de Proteínas , Proteoglicanas/metabolismo , Proteômica , Xilanos/metabolismo
4.
Proc Natl Acad Sci U S A ; 109(35): 14253-8, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22893684

RESUMO

The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of the cell wall are poorly understood. We have identified and functionally characterized an Arabidopsis glucuronoxylan methyltransferase (GXMT) that catalyzes 4-O-methylation of the glucuronic acid substituents of this polysaccharide. AtGXMT1, which was previously classified as a domain of unknown function (DUF) 579 protein, specifically transfers the methyl group from S-adenosyl-L-methionine to O-4 of α-D-glucopyranosyluronic acid residues that are linked to O-2 of the xylan backbone. Biochemical characterization of the recombinant enzyme indicates that GXMT1 is localized in the Golgi apparatus and requires Co(2+) for optimal activity in vitro. Plants lacking GXMT1 synthesize glucuronoxylan in which the degree of 4-O-methylation is reduced by 75%. This result is correlated to a change in lignin monomer composition and an increase in glucuronoxylan release during hydrothermal treatment of secondary cell walls. We propose that the DUF579 proteins constitute a previously undescribed family of cation-dependent, polysaccharide-specific O-methyl-transferases. This knowledge provides new opportunities to selectively manipulate polysaccharide O-methylation and extends the portfolio of structural targets that can be modified either alone or in combination to modulate biopolymer interactions in the plant cell wall.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácido Glucurônico/metabolismo , Metiltransferases/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Catálise , Cátions/metabolismo , Parede Celular/enzimologia , Éteres/metabolismo , Complexo de Golgi/metabolismo , Lignina/metabolismo , Metilação , Metiltransferases/química , Metiltransferases/genética , Mutagênese/fisiologia , Polissacarídeos/metabolismo , Estrutura Terciária de Proteína/fisiologia , Xilanos/biossíntese
5.
Glycobiology ; 22(3): 439-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22048859

RESUMO

Glucuronoxylans with a backbone of 1,4-linked ß-D-xylosyl residues are ubiquitous in the secondary walls of gymnosperms and angiosperms. Xylans have been reported to be present in hornwort cell walls, but their structures have not been determined. In contrast, the presence of xylans in the cell walls of mosses and liverworts remains a subject of debate. Here we present data that unequivocally establishes that the cell walls of leafy tissue and axillary hair cells of the moss Physcomitrella patens contain a glucuronoxylan that is structurally similar to glucuronoxylans in the secondary cell walls of vascular plants. Some of the 1,4-linked ß-D-xylopyranosyl residues in the backbone of this glucuronoxylan bear an α-D-glucosyluronic acid (GlcpA) sidechain at O-2. In contrast, the lycopodiophyte Selaginella kraussiana synthesizes a glucuronoxylan substituted with 4-O-Me-α-D-GlcpA sidechains, as do many hardwood species. The monilophyte Equisetum hyemale produces a glucuronoxylan with both 4-O-Me-α-D-GlcpA and α-D-GlcpA sidechains, as does Arabidopsis. The seedless plant glucuronoxylans contain no discernible amounts of the reducing-end sequence that is characteristic of gymnosperm and eudicot xylans. Phylogenetic studies showed that the P. patens genome contains genes with high sequence similarity to Arabidopsis CAZy family GT8, GT43 and GT47 glycosyltransferases that are likely involved in xylan synthesis. We conclude that mosses synthesize glucuronoxylan that is structurally similar to the glucuronoxylans present in the secondary cell walls of lycopodiophytes, monilophytes, and many seed-bearing plants, and that several of the glycosyltransferases required for glucuronoxylan synthesis evolved before the evolution of tracheophytes.


Assuntos
Bryopsida/metabolismo , Evolução Molecular , Gleiquênias/genética , Xilanos/biossíntese , Bryopsida/citologia , Bryopsida/enzimologia , Bryopsida/genética , Configuração de Carboidratos , Parede Celular/metabolismo , Gleiquênias/metabolismo , Genoma de Planta , Glucuronatos/química , Glicosiltransferases/genética , Oligossacarídeos/química , Filogenia , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Feixe Vascular de Plantas/genética , Plantas/anatomia & histologia , Plantas/genética , Plantas/metabolismo
6.
Phytochemistry ; 71(17-18): 1963-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20970816

RESUMO

Understanding the biochemical mechanisms by which plants respond to microbial infection is a fundamental goal of plant science. Extracellular dermal glycoproteins (EDGPs) are widely expressed in plant tissues and have been implicated in plant defense responses. Although EDGPs are known to interact with fungal proteins, the downstream effects of these interactions are poorly understood. To gain insight into these phenomena, we used tobacco floral nectar as a model system to identify a mechanism by which the EDGP known as Nectarin IV (NEC4) functions as pathogen surveillance molecule. Our data demonstrates that the interaction of NEC4 with a fungal endoglucanase (XEG) promotes the catalytic activity of Nectarin V (NEC5), which catalyzes the conversion of glucose and molecular oxygen to gluconic acid and H(2)O(2). Significantly enhanced NEC5 activity was observed when XEG was added to nectar or nectarin solutions that contain NEC4. This response was also observed when the purified NEC4:XEG complex was added to NEC4-depleted nectarin solutions, which did not respond to XEG alone. These results indicate that formation of the NEC4:XEG complex is a key step leading to induction of NEC5 activity in floral nectar, resulting in an increase in concentrations of reactive oxygen species (ROS), which are known to inhibit microbial growth directly and activate signal transduction pathways that induce innate immunity responses in the plant.


Assuntos
Proteínas Fúngicas/metabolismo , Glucose Oxidase/metabolismo , Glicoproteínas/metabolismo , Nicotiana/química , Néctar de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Celulase/antagonistas & inibidores , Regulação da Expressão Gênica de Plantas , Glucanos/análise , Glucanos/metabolismo , Gluconatos/metabolismo , Glucose Oxidase/efeitos dos fármacos , Néctar de Plantas/química , Espécies Reativas de Oxigênio/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nicotiana/enzimologia , Xilanos/análise , Xilanos/metabolismo
7.
Fungal Genet Biol ; 46(6-7): 450-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19298860

RESUMO

Cdc42, a member of the Rho-family small GTP-binding proteins, is a pivotal signaling switch that cycles between active GTP-bound and inactive GDP-bound forms, controlling actin cytoskeleton organization and cell polarity. In this report, we show that MgCdc42, a Cdc42 ortholog in Magnaporthe grisea, is required for its plant penetration. Consequently, the deletion mutants show dramatically decreased virulence to rice due to the arrest of penetration and infectious growth, which may be attributed to the defect of turgor and superoxide generation during the appressorial development in Mgcdc42 deletion mutants. In addition, the mutants also exhibit pleotropic defects including gherkin-shaped conidia, delayed germination as well as decreased sporulation. Furthermore, dominant negative mutation leads to a similar phenotype to that of the deletion mutants, lending further support to the conclusion that MgCdc42 is required for the penetration and virulence of M. grisea.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/enzimologia , Magnaporthe/patogenicidade , Doenças das Plantas/microbiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Fúngicas/genética , Hordeum/microbiologia , Magnaporthe/genética , Magnaporthe/fisiologia , Oryza/microbiologia , Deleção de Sequência , Virulência , Proteína cdc42 de Ligação ao GTP/genética
8.
Glycobiology ; 18(11): 891-904, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18703646

RESUMO

Xyloglucan is a well-characterized hemicellulosic polysaccharide that is present in the cell walls of all seed-bearing plants. The cell walls of avascular and seedless vascular plants are also believed to contain xyloglucan. However, these xyloglucans have not been structurally characterized. This lack of information is an impediment to understanding changes in xyloglucan structure that occurred during land plant evolution. In this study, xyloglucans were isolated from the walls of avascular (liverworts, mosses, and hornworts) and seedless vascular plants (club and spike mosses and ferns and fern allies). Each xyloglucan was fragmented with a xyloglucan-specific endo-glucanase and the resulting oligosaccharides then structurally characterized using NMR spectroscopy, MALDI-TOF and electrospray mass spectrometry, and glycosyl-linkage and glycosyl residue composition analyses. Our data show that xyloglucan is present in the cell walls of all major divisions of land plants and that these xyloglucans have several common structural motifs. However, these polysaccharides are not identical because specific plant groups synthesize xyloglucans with unique structural motifs. For example, the moss Physcomitrella patens and the liverwort Marchantia polymorpha synthesize XXGGG- and XXGG-type xyloglucans, respectively, with sidechains that contain a beta-D-galactosyluronic acid and a branched xylosyl residue. By contrast, hornworts synthesize XXXG-type xyloglucans that are structurally homologous to the xyloglucans synthesized by many seed-bearing and seedless vascular plants. Our results increase our understanding of the evolution, diversity, and function of structural motifs in land-plant xyloglucans and provide support to the proposal that hornworts are sisters to the vascular plants.


Assuntos
Glucanos/química , Ácidos Hexurônicos/química , Plantas/metabolismo , Xilanos/química , Anthocerotophyta/metabolismo , Briófitas/metabolismo , Sequência de Carboidratos , Parede Celular/química , Glucanos/biossíntese , Glucanos/genética , Hepatófitas/metabolismo , Dados de Sequência Molecular , Filogenia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Xilanos/biossíntese , Xilanos/genética
9.
Plant Cell Physiol ; 48(11): 1624-34, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17938130

RESUMO

Xylan is the second most abundant polysaccharide in dicot wood, and thus elucidation of the xylan biosynthetic pathway is required to understand the mechanisms controlling wood formation. Genetic and chemical studies in Arabidopsis have implicated three genes, FRAGILE FIBER8 (FRA8), IRREGULAR XYLEM8 (IRX8) and IRREGULAR XYLEM9 (IRX9), in the biosynthesis of glucuronoxylan (GX), but the biochemical functions of the encoded proteins are not known. In this study, we determined the effect of the fra8, irx8 and irx9 mutations on the activities of xylan xylosyltransferase (XylT) and glucuronyltransferase (GlcAT). We show that microsomes isolated from the stems of wild-type Arabidopsis exhibit XylT and GlcAT activities in the presence of exogenous 1,4-linked beta-d-xylooligomers. Xylooligomers ranging in size from two to six can be used as acceptors by XylT to form xylooligosaccharides with up to 12 xylosyl residues. We provide evidence that the irx9 mutation results in a substantial reduction in XylT activity but has no discernible effect on GlcAT activity. In contrast, neither XylT nor GlcAT activity is affected by fra8 and irx8 mutations. Our results provide biochemical evidence that the irx9 mutation results in a deficiency in xylan XylT activity, thus leading to a defect in the elongation of the xylan backbone.


Assuntos
Proteínas de Arabidopsis/metabolismo , Mutação , Pentosiltransferases/metabolismo , Xilanos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica de Plantas , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Estrutura Molecular , Pentosiltransferases/genética , Plantas Geneticamente Modificadas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Xilanos/química , UDP Xilose-Proteína Xilosiltransferase
10.
Plant Cell ; 19(2): 549-63, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17322407

RESUMO

Mutations of Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9 were previously shown to cause a collapsed xylem phenotype and decreases in xylose and cellulose in cell walls. In this study, we characterized IRX8 and IRX9 and performed chemical and structural analyses of glucuronoxylan (GX) from irx8 and irx9 plants. IRX8 and IRX9 are expressed specifically in cells undergoing secondary wall thickening, and their encoded proteins are targeted to the Golgi, where GX is synthesized. 1H-NMR spectroscopy showed that the reducing end of Arabidopsis GX contains the glycosyl sequence 4-beta-D-Xylp-(1-->4)-beta-D-Xylp-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-GalpA-(1-->4)-D-Xylp, which was previously identified in birch (Betula verrucosa) and spruce (Picea abies) GX. This indicates that the reducing end structure of GXs is evolutionarily conserved in woody and herbaceous plants. This sequence is more abundant in irx9 GX than in the wild type, whereas irx8 and fragile fiber8 (fra8) plants are nearly devoid of it. The number of GX chains increased and the GX chain length decreased in irx9 plants. Conversely, the number of GX chains decreased and the chain length heterodispersity increased in irx8 and fra8 plants. Our results suggest that IRX9 is required for normal GX elongation and indicate roles for IRX8 and FRA8 in the synthesis of the glycosyl sequence at the GX reducing end.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicosiltransferases/metabolismo , Pentosiltransferases/metabolismo , Xilanos/biossíntese , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Carboidratos , Parede Celular/química , Parede Celular/metabolismo , Genes Reporter , Teste de Complementação Genética , Glicosiltransferases/genética , Complexo de Golgi/metabolismo , Dados de Sequência Molecular , Peso Molecular , Pentosiltransferases/genética , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Xilanos/química , Xilema/química , Xilema/metabolismo
11.
Trends Plant Sci ; 11(4): 162-4, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16537114

RESUMO

Secondary walls in wood are the most abundant biomass produced by plants. Understanding how plants make wood is not only of interest in basic plant biology but also has important implications for tree biotechnology. Three recent papers report exciting findings regarding a group of novel glycosyltransferases (GTs) involved in secondary wall synthesis. Because little is known about genes involved in the synthesis of wood polysaccharides other than cellulose, the identification of these GTs is a breakthrough in the molecular dissection of wood formation.


Assuntos
Arabidopsis/enzimologia , Parede Celular/metabolismo , Glicosiltransferases/fisiologia , Populus/enzimologia , Arabidopsis/citologia , Arabidopsis/genética , Perfilação da Expressão Gênica , Glicosiltransferases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Populus/citologia , Populus/genética , Homologia de Sequência do Ácido Nucleico
12.
Appl Environ Microbiol ; 72(2): 986-93, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16461639

RESUMO

Magnaporthe grisea, a destructive ascomycetous pathogen of rice, secretes cell wall-degrading enzymes into a culture medium containing purified rice cell walls as the sole carbon source. From M. grisea grown under the culture conditions described here, we have identified an expressed sequenced tag, XYL-6, a gene that is also expressed in M. grisea-infected rice leaves 24 h postinoculation with conidia. This gene encodes a protein about 65% similar to endo-beta-1,4-D-glycanases within glycoside hydrolase family GH10. A M. grisea knockout mutant for XYL-6 was created, and it was shown to be as virulent as the parent strain in infecting the rice host. The proteins secreted by the parent strain and by the xyl-6Delta mutant were each fractionated by liquid chromatography, and the collected fractions were assayed for endo-beta-1,4-D-glucanase or endo-beta-1,4-D-xylanase activities. Two protein-containing peaks with endo-beta-1,4-D-xylanase activity secreted by the parent strain are not detectable in the column eluant of the proteins secreted by the mutant. The two endoxylanases (XYL-6alpha and XYL-6beta) from the parent were each purified to homogeneity. N-terminal amino acid sequencing indicated that XYL-6alpha is a fragment of XYL-6beta and that XYL-6beta is identical to the deduced protein sequence encoded by the XYL-6 gene. Finally, XYL-6 was introduced into Pichia pastoris for heterologous expression, which resulted in the purification of a fusion protein, XYL-6H, from the Pichia pastoris culture filtrate. XYL-6H is active in cleaving arabinoxylan. These experiments unequivocally established that the XYL-6 gene encodes a secreted endo-beta-1,4-D-xylanase.


Assuntos
Endo-1,4-beta-Xilanases/genética , Magnaporthe/enzimologia , Magnaporthe/genética , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar/genética , DNA Fúngico/genética , Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Etiquetas de Sequências Expressas , Expressão Gênica , Marcação de Genes , Genes Fúngicos , Magnaporthe/patogenicidade , Dados de Sequência Molecular , Mutação , Oryza/microbiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
13.
Plant Cell ; 17(12): 3390-408, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16272433

RESUMO

Secondary walls in vessels and fibers of dicotyledonous plants are mainly composed of cellulose, xylan, and lignin. Although genes involved in biosynthesis of cellulose and lignin have been intensively studied, little is known about genes participating in xylan synthesis. We found that Arabidopsis thaliana fragile fiber8 (fra8) is defective in xylan synthesis. The fra8 mutation caused a dramatic reduction in fiber wall thickness and a decrease in stem strength. FRA8 was found to encode a member of glycosyltransferase family 47 and exhibits high sequence similarity to tobacco (Nicotiana plumbaginifolia) pectin glucuronyltransferase. FRA8 is expressed specifically in developing vessels and fiber cells, and FRA8 is targeted to Golgi. Comparative analyses of cell wall polysaccharide fractions from fra8 and wild-type stems showed that the xylan and cellulose contents are drastically reduced in fra8, whereas xyloglucan and pectin are elevated. Further structural analysis of cell walls revealed that although wild-type xylans contain both glucuronic acid and 4-O-methylglucuronic acid residues, xylans from fra8 retain only 4-O-methylglucuronic acid, indicating that the fra8 mutation results in a specific defect in the addition of glucuronic acid residues onto xylans. These findings suggest that FRA8 is a glucuronyltransferase involved in the biosynthesis of glucuronoxylan during secondary wall formation.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Parede Celular/metabolismo , Glucuronosiltransferase/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Clonagem Molecular , DNA de Plantas , Genes de Plantas , Glucuronosiltransferase/química , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Frações Subcelulares/enzimologia
14.
Carbohydr Res ; 340(11): 1826-40, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15975566

RESUMO

The structures of xyloglucans from several plants in the subclass Asteridae were examined to determine how their structures vary in different taxonomic orders. Xyloglucans, solubilized from plant cell walls by a sequential (enzymatic and chemical) extraction procedure, were isolated, and their structures were characterized by NMR spectroscopy and mass spectrometry. All campanulids examined, including Lactuca sativa (lettuce, order Asterales), Tenacetum ptarmiciflorum (dusty miller, order Asterales), and Daucus carota (carrot, order Apiales), produce typical xyloglucans that have an XXXG-type branching pattern and contain alpha-d-Xylp-, beta-D-Galp-(1-->2)-alpha-D-Xylp-, and alpha-L-Fucp-(1-->2)-beta-D-Galp-(1-->2)-alpha-D-Xylp- side chains. However, the lamiids produce atypical xyloglucans. For example, previous analyses showed that Capsicum annum (pepper) and Lycopersicon esculentum (tomato), two species in the order Solanales, and Olea europaea (olive, order Lamiales) produce xyloglucans that contain arabinosyl and galactosyl residues, but lack fucosyl residues. The XXGG-type xyloglucans produced by Solanaceous species are less branched than the XXXG-type xyloglucan produced by Olea europaea. This study shows that Ipomoea pupurea (morning glory, order Solanales), Ocimum basilicum (basil, order Lamiales), and Plantago major (plantain, order Lamiales) all produce xyloglucans that lack fucosyl residues and have an unusual XXGGG-type branching pattern in which the basic repeating core contains five glucose subunits in the backbone. Furthermore, Neruim oleander (order Gentianales) produces an XXXG-type xyloglucan that contains arabinosyl, galactosyl, and fucosyl residues. The appearance of this intermediate xyloglucan structure in oleander has implications regarding the evolutionary development of xyloglucan structure and its role in primary plant cell walls.


Assuntos
Asteraceae/metabolismo , Parede Celular/metabolismo , Glucanos/química , Xilanos/química , Álcoois/química , Álcoois/metabolismo , Capsicum , Configuração de Carboidratos , Cromatografia Líquida de Alta Pressão , Daucus carota , Íons , Lactuca , Solanum lycopersicum , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oligossacarídeos/química , Filogenia , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Carbohydr Res ; 340(11): 1818-25, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15927168

RESUMO

Eight oligosaccharide subunits, generated by endoglucanase treatment of the plant polysaccharide xyloglucan isolated from the culture filtrate of suspension-cultured tomato (Lycopersicon esculentum) cells, were structurally characterized by NMR spectroscopy. These oligosaccharides, which contain up to three endogenous O-acetyl substituents, consist of a cellotetraose core with alpha-D-Xylp residues at O-6 of the two beta-D-Glcp residues at the non-reducing end of the core. Some of the alpha-D-Xylp residues themselves bear either an alpha-L-Arap or a beta-D-Galp residue at O-2. O-Acetyl substituents are located at O-6 of the unbranched (internal) beta-D-Glcp residue, O-6 of the terminal beta-D-Galp residue, and/or at O-5 of the terminal alpha-L-Arap residue. Structural assignments were facilitated by long-range scalar coupling interactions observed in the high-resolution gCOSY spectra of the oligosaccharides. The presence of five-bond scalar coupling constants in the gCOSY spectra provides a direct method of assigning O-acetylation sites, which may prove generally useful in the analysis of O-acylated glycans. Spectral assignment of these endogenously O-acetylated oligosaccharides makes it possible to deduce correlations between their structural features and the chemical shifts of diagnostic resonances in their NMR spectra.


Assuntos
Glucanos/química , Oligossacarídeos/química , Solanum lycopersicum/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria
16.
Annu Rev Plant Biol ; 55: 109-39, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15377216

RESUMO

Rhamnogalacturonan II (RG-II) is a structurally complex pectic polysaccharide that was first identified in 1978 as a quantitatively minor component of suspension-cultured sycamore cell walls. Subsequent studies have shown that RG-II is present in the primary walls of angiosperms, gymnosperms, lycophytes, and pteridophytes and that its glycosyl sequence is conserved in all vascular plants examined to date. This is remarkable because RG-II is composed of at least 12 different glycosyl residues linked together by more than 20 different glycosidic linkages. However, only a few of the genes and proteins required for RG-II biosynthesis have been identified. The demonstration that RG-II exists in primary walls as a dimer that is covalently cross-linked by a borate diester was a major advance in our understanding of the structure and function of this pectic polysaccharide. Dimer formation results in the cross-linking of the two homogalacturonan chains upon which the RG-II molecules are constructed and is required for the formation of a three-dimensional pectic network in muro. This network contributes to the mechanical properties of the primary wall and is required for normal plant growth and development. Indeed, changes in wall properties that result from decreased borate cross-linking of pectin may lead to many of the symptoms associated with boron deficiency in plants.


Assuntos
Cycadopsida/metabolismo , Magnoliopsida/metabolismo , Pectinas/química , Cycadopsida/genética , Variação Genética , Magnoliopsida/genética , Pectinas/genética , Polissacarídeos/química
17.
Planta ; 219(1): 147-57, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14991405

RESUMO

Arabidopsis thaliana mur1 is a dwarf mutant with altered cell-wall properties, in which l-fucose is partially replaced by l-galactose in the xyloglucan and glycoproteins. We found that the mur1 mutation also affects the primary structure of the pectic polysaccharide rhamnogalacturonan II (RG-II). In mur1 RG-II a non-reducing terminal 2- O-methyl l-galactosyl residue and a 3,4-linked l-galactosyl residue replace the non-reducing terminal 2- O-methyl l-fucosyl residue and the 3,4-linked l-fucosyl residue, respectively, that are present in wild-type RG-II. Furthermore, we found that a terminal non-reducing l-galactosyl residue, rather than the previously reported d-galactosyl residue, is present on the 2- O-methyl xylose-containing side chain of RG-II in both wild type and mur1 plants. Approximately 95% of the RG-II from wild type and mur1 plants is solubilized as a high-molecular-weight (>100 kDa) complex, by treating walls with aqueous potassium phosphate. The molecular mass of RG-II in this complex was reduced to 5-10 kDa by treatment with endopolygalacturonase, providing additional evidence that RG-II is covalently linked to homogalacturonan. The results of this study provide additional information on the structure of RG-II and the role of this pectic polysaccharide in the plant cell wall.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fucose/análise , Galactose/análise , Mutação , Pectinas/química , Arabidopsis/química , Configuração de Carboidratos , Sequência de Carboidratos , Parede Celular/química , Células Cultivadas , Fucose/análogos & derivados , Galactose/análogos & derivados , Concentração de Íons de Hidrogênio , Pectinas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectrometria de Massas por Ionização por Electrospray
18.
Plant Physiol ; 134(1): 339-51, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14671014

RESUMO

Borate ester cross-linking of the cell wall pectic polysaccharide rhamnogalacturonan II (RG-II) is required for the growth and development of angiosperms and gymnosperms. Here, we report that the amounts of borate cross-linked RG-II present in the sporophyte primary walls of members of the most primitive extant vascular plant groups (Lycopsida, Filicopsida, Equisetopsida, and Psilopsida) are comparable with the amounts of RG-II in the primary walls of angiosperms. By contrast, the gametophyte generation of members of the avascular bryophytes (Bryopsida, Hepaticopsida, and Anthocerotopsida) have primary walls that contain small amounts (approximately 1% of the amounts of RG-II present in angiosperm walls) of an RG-II-like polysaccharide. The glycosyl sequence of RG-II is conserved in vascular plants, but these RG-IIs are not identical because the non-reducing L-rhamnosyl residue present on the aceric acid-containing side chain of RG-II of all previously studied plants is replaced by a 3-O-methyl rhamnosyl residue in the RG-IIs isolated from Lycopodium tristachyum, Ceratopteris thalictroides, Platycerium bifurcatum, and Psilotum nudum. Our data indicate that the amount of RG-II incorporated into the walls of plants increased during the evolution of vascular plants from their bryophyte-like ancestors. Thus, the acquisition of a boron-dependent growth habit may be correlated with the ability of vascular plants to maintain upright growth and to form lignified secondary walls. The conserved structures of pteridophyte, lycophyte, and angiosperm RG-IIs suggests that the genes and proteins responsible for the biosynthesis of this polysaccharide appeared early in land plant evolution and that RG-II has a fundamental role in wall structure.


Assuntos
Evolução Biológica , Pectinas/metabolismo , Plantas/genética , Plantas/metabolismo , Boratos/análise , Boro/análise , Briófitas/genética , Briófitas/metabolismo , Sequência de Carboidratos , Parede Celular/metabolismo , Gleiquênias/genética , Gleiquênias/metabolismo , Lycopodiaceae/genética , Lycopodiaceae/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Pectinas/química , Selaginellaceae/genética , Selaginellaceae/metabolismo
19.
Microbiology (Reading) ; 149(Pt 10): 2941-2946, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14523126

RESUMO

An extracellular tannase was produced from solid-state cultures of Aspergillus niger. The enzyme was purified to homogeneity from the cell-free culture broth by preparative isoelectric focusing and by FPLC using anion-exchange and gel-filtration chromatography. SDS-PAGE analysis as well as gel localization studies of purified tannase indicated the presence of two enzyme forms, with molecular masses of 90 kDa and 180 kDa. The tannase had an isoelectric point of 3.8, a temperature optimum of 60-70 degrees C and a pH optimum of 6.0. The substrate specificity of the tannase was determined by HPLC analysis of tannin substrates and products. The enzyme was able to remove gallic acid from both condensed and hydrolysable tannins. Internal sequences were obtained from each of the gel-purified and trypsin-digested tannase forms. The peptide sequences obtained from both forms were identical to sequences within a beta-glucosidase from Aspergillus kawachii. The purified tannase was tested for beta-glucosidase activity and was shown to hydrolyse cellobiose efficiently. However, no beta-glucosidase activity was detected when the enzyme was assayed in the presence of tannic acid.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/isolamento & purificação , beta-Glucosidase/isolamento & purificação , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Dados de Sequência Molecular , beta-Glucosidase/metabolismo
20.
Carbohydr Res ; 338(11): 1197-208, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12747862

RESUMO

The xyloglucan secreted by suspension-cultured tomato (Lycopersicon esculentum) cells was structurally characterized by analysis of the oligosaccharides generated by treating the polysaccharide with a xyloglucan-specific endoglucanase (XEG). These oligosaccharide subunits were chemically reduced to form the corresponding oligoglycosyl alditols, which were isolated by high-performance liquid chromatography (HPLC). Thirteen of the oligoglycosyl alditols were structurally characterized by a combination of matrix-assisted laser-desorption ionization mass spectrometry and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. Nine of the oligoglycosyl alditols (GXGGol, XXGGol, GSGGol, XSGGol, LXGGol, XTGGol, LSGGol, LLGGol, and LTGGol, [see, Fry, S.C.; York, W.S., et al., Physiologia Plantarum 1993, 89, 1-3, for this nomenclature]) are derived from oligosaccharide subunits that have a cellotetraose backbone. Very small amounts of oligoglycosyl alditols (XGGol, XGGXXGGol, XXGGXGGol, and XGGXSGGol) derived from oligosaccharide subunits that have a cellotriose or celloheptaose backbone were also purified and characterized. The results demonstrate that the xyloglucan secreted by suspension-cultured tomato cells is very complex and is composed predominantly of 'XXGG-type' subunits with a cellotetraose backbone. The rigorous characterization of the oligoglycosyl alditols and assignment of their 1H and 13C NMR spectra constitute a robust data set that can be used as the basis for rapid and accurate structural profiling of xyloglucans produced by Solanaceous plant species and the characterization of enzymes involved in the synthesis, modification, and breakdown of these polysaccharides.


Assuntos
Glucanos/química , Solanum lycopersicum/química , Xilanos/química , Sequência de Carboidratos , Células Cultivadas , Celulase/metabolismo , Cromatografia Líquida de Alta Pressão , Glucanos/isolamento & purificação , Glucanos/metabolismo , Solanum lycopersicum/citologia , Espectroscopia de Ressonância Magnética/métodos , Dados de Sequência Molecular , Oligossacarídeos/análise , Oligossacarídeos/isolamento & purificação , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Álcoois Açúcares/análise , Álcoois Açúcares/isolamento & purificação , Xilanos/isolamento & purificação , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...