Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anal Toxicol ; 37(1): 11-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23074216

RESUMO

Oral cannabinoids are taken for medicinal or recreational purposes, yet little is known about tolerance to their effects after high-dose extended exposure. The development of tolerance to effects of around-the-clock oral synthetic Δ9-tetrahydrocannabinol (THC) (20 mg every 3.5-6 h) was evaluated in 13 healthy male daily cannabis smokers residing on a secure research unit: 40 mg on Day 1; 100 mg on Days 2-4; 120 mg on Days 5-6. Systolic and diastolic blood pressure (BP), heart rate, and symptoms of subjective intoxication (100 mm visual-analogue scales, VAS) were assessed the morning of Day 1 (before any oral THC), and on Days 2, 4 and 6, every 30 min for 3 h after the first morning THC dose. Morning subjective intoxication ratings increased from Days 1 to 2, and then declined on Days 4 and 6. The morning THC dose increased intoxication ratings on Day 2, but had less effect on Days 4 and 6, a pattern consistent with tolerance. THC lowered BP and increased heart rate over the six days. Plasma THC and 11-OH-THC concentrations increased significantly over the first five days of dosing. Six days of around-the-clock, oral THC produced tolerance to subjective intoxication, but not to cardiovascular effects.


Assuntos
Canabinoides/sangue , Cannabis/química , Dronabinol/administração & dosagem , Fumar Maconha/metabolismo , Adolescente , Adulto , Cromatografia Gasosa , Relação Dose-Resposta a Droga , Dronabinol/sangue , Tolerância a Medicamentos , Humanos , Masculino , Fumar Maconha/efeitos adversos , Espectrometria de Massas , Pessoa de Meia-Idade , Receptor CB1 de Canabinoide/metabolismo , Adulto Jovem
2.
Am J Drug Alcohol Abuse ; 38(1): 114-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21797816

RESUMO

BACKGROUND: The endocannabinoid system modulates the hypothalamic-pituitary-adrenal (HPA) axis, but the effect of cannabinoid type 1 (CB1) receptor antagonism following chronic CB1 receptor stimulation in humans is unknown. OBJECTIVES: To evaluate effects of the CB1 receptor antagonist rimonabant on the HPA axis in cannabis-dependent individuals. METHODS: Fourteen daily cannabis smokers received increasingly frequent 20 mg oral Δ9-tetrahydrocannabinol (THC) doses (60-120 mg/day) over 8 days to standardize cannabis tolerance. Concurrent with the last THC dose, double-blind placebo or rimonabant (20 or 40 mg) was administered. Cannabinoid, rimonabant, and cortisol plasma concentrations were measured 1.5 hours prior to rimonabant administration and 2.0, 5.5, and 12.5 hours post-dose. RESULTS: Ten participants completed before premature study termination due to rimonabant's withdrawal from development. Five participants received 20 mg, three received 40 mg, and two placebo. There was a significant positive association between rimonabant concentration and change in cortisol concentration from baseline (r = .53, p < .01). There also was a borderline significant association between rimonabant dose and cortisol concentrations when the dose-by-time interaction was included. Four of eight participants receiving rimonabant (none of two receiving placebo) had greater cortisol concentrations 2 hours after dosing (at 11:30) than at 08:00, while normal diurnal variation should have peak concentrations at 08:00. CONCLUSION: Rimonabant 20 or 40 mg did not significantly increase plasma cortisol concentrations, consistent with an absence of antagonist-elicited cannabis withdrawal. SCIENTIFIC SIGNIFICANCE: Rimonabant doses >40 mg might elicit cortisol changes, confirming a role for CB1 receptors in modulating the HPA axis in humans.


Assuntos
Dronabinol/administração & dosagem , Hidrocortisona/sangue , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Abuso de Maconha/sangue , Piperidinas/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Método Duplo-Cego , Esquema de Medicação , Humanos , Masculino , Rimonabanto
3.
Clin Chem ; 57(11): 1597-606, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21875944

RESUMO

BACKGROUND: Oral fluid (OF) testing is increasingly important for drug treatment, workplace, and drugged-driving programs. There is interest in predicting plasma or whole-blood concentrations from OF concentrations; however, the relationship between these matrices is incompletely characterized because of few controlled drug-administration studies. METHODS: Ten male daily cannabis smokers received around-the-clock escalating 20-mg oral Δ(9)-tetrahydrocannabinol (THC, dronabinol) doses (40-120 mg/day) for 8 days. Plasma and OF samples were simultaneously collected before, during, and after dosing. OF THC, 11-hydroxy-THC and 11-nor-9-carboxy-THC (THCCOOH) were quantified by GC-MS at 0.5-µg/L, 0.5-µg/L, and 7.5-ng/L limits of quantification (LOQs), respectively. In plasma, the LOQs were 0.25 µg/L for THC and THCCOOH, and 0.5 µg/L for 11-hydroxy-THC. RESULTS: Despite multiple oral THC administrations each day and increasing plasma THC concentrations, OF THC concentrations generally decreased over time, reflecting primarily previously self-administered smoked cannabis. The logarithms of the THC concentrations in oral fluid and plasma were not significantly correlated (r = -0.10; P = 0.065). The OF and plasma THCCOOH concentrations, albeit with 1000-fold higher concentrations in plasma, increased throughout dosing. The logarithms of OF and plasma THCCOOH concentrations were significantly correlated (r = 0.63; P < 0.001), although there was high interindividual variation. A high OF/plasma THC ratio and a high OF THC/THCCOOH ratio indicated recent cannabis smoking. CONCLUSIONS: OF monitoring does not reliably detect oral dronabinol intake. The time courses of THC and THCCOOH concentrations in plasma and OF were different after repeated oral THC doses, and high interindividual variation was observed. For these reasons, OF cannabinoid concentrations cannot predict concurrent plasma concentrations.


Assuntos
Dronabinol/farmacocinética , Saliva/metabolismo , Detecção do Abuso de Substâncias/métodos , Adolescente , Adulto , Dronabinol/administração & dosagem , Dronabinol/análogos & derivados , Dronabinol/sangue , Dronabinol/metabolismo , Estudos de Viabilidade , Humanos , Masculino , Plasma , Autoadministração , Fatores de Tempo , Adulto Jovem
4.
J Clin Psychopharmacol ; 31(5): 603-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21869692

RESUMO

Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ9-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses.


Assuntos
Abuso de Maconha/fisiopatologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Síndrome de Abstinência a Substâncias/etiologia , Adulto , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Dronabinol/administração & dosagem , Dronabinol/análogos & derivados , Dronabinol/farmacocinética , Dronabinol/farmacologia , Humanos , Masculino , Espectrometria de Massas , Piperidinas/administração & dosagem , Piperidinas/farmacocinética , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Rimonabanto , Síndrome de Abstinência a Substâncias/fisiopatologia , Adulto Jovem
5.
Addiction ; 106(3): 499-506, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21134021

RESUMO

AIMS: To develop and validate empirically a mathematical model for identifying new cannabis use in chronic, daily cannabis smokers. DESIGN: Models were based on urinary creatinine-normalized (CN) cannabinoid excretion in chronic cannabis smokers. SETTING: For model development, participants resided on a secure research unit for 30 days. For model validation, participants were abstinent with daily observed urine specimens for 28 days. PARTICIPANTS: A total of 48 (model development) and 67 (model validation) daily cannabis smokers were recruited. MEASUREMENTS: All voided urine was collected and analyzed for 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) by gas chromatography-mass spectrometry (GCMS; limit of quantification 2.5 ng/ml) and creatinine (mg/ml). Urine THCCOOH was normalized to creatinine, yielding ng/mg CN-THCCOOH concentrations. Urine concentration ratios were determined from 123,513 specimen pairs collected 2-30 days apart. FINDINGS: A mono-exponential model (with two parameters, initial urine specimen CN-THCCOOH concentration and time between specimens), based on the Marquardt-Levenberg algorithm, provided a reasonable data fit. Prediction intervals with varying probability levels (80, 90, 95, 99%) provide upper ratio limits for each urine specimen pair. Ratios above these limits suggest cannabis re-use. Disproportionate numbers of ratios were higher than expected for some participants, prompting development of two additional rules that avoid misidentification of re-use in participants with unusual CN-THCCOOH excretion patterns. CONCLUSIONS: For the first time, a validated model is available to aid in the differentiation of new cannabis use from residual creatinine-normalized 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (CN-THCCOOH) excretion in chronic, daily cannabis users. These models are valuable for clinicians, toxicologists and drug treatment staff and work-place, military and criminal justice drug-testing programs.


Assuntos
Dronabinol/análogos & derivados , Abuso de Maconha/urina , Psicotrópicos/urina , Detecção do Abuso de Substâncias/métodos , Adulto , Algoritmos , Doença Crônica , Creatinina/urina , Diagnóstico Diferencial , Dronabinol/farmacocinética , Dronabinol/urina , Resíduos de Drogas/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Modelos Biológicos , Dinâmica não Linear , Valor Preditivo dos Testes , Psicotrópicos/farmacocinética , Recidiva , Detecção do Abuso de Substâncias/estatística & dados numéricos , Fatores de Tempo , Adulto Jovem
6.
Clin Chem ; 56(8): 1261-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20530732

RESUMO

BACKGROUND: Oral fluid, a promising alternative matrix for drug monitoring in clinical and forensic investigations, offers noninvasive sample collection under direct observation. Cannabinoid distribution into oral fluid is complex and incompletely characterized due to the lack of controlled drug administration studies. METHODS: To characterize cannabinoid disposition in oral fluid, we administered around-the-clock oral Delta(9)-tetrahydrocannabinol (THC) (Marinol) doses to 10 participants with current daily cannabis use. We obtained oral fluid samples (n=440) by use of Quantisal collection devices before, during, and after 37 20-mg THC doses over 9 days. Samples were extracted with multiple elution solvents from a single SPE column and analyzed by 2-dimensional GC-MS with electron-impact ionization for THC, 11-hydroxy-THC (11-OH-THC), cannabidiol, and cannabinol and negative chemical ionization for 11-nor-9-carboxy-THC (THCCOOH). Linear ranges were 0.5-50 microg/L, with the exception of cannabinol (1-50 microg/L) and THCCOOH (7.5-500 ng/L). RESULTS: THCCOOH was the most prevalent analyte in 432 samples (98.2%), with concentrations up to 1117.9 ng/L. In contrast, 11-OH-THC was not identified in any sample; cannabidiol and cannabinol were quantified in 3 and 8 samples, respectively, with maximum concentrations of 2.1 and 13 microg/L. THC was present in only 20.7% of samples, with highest concentrations near admission (median 4.2 microg/L, range 0.6-481.9) from previously self-administered smoked cannabis. CONCLUSIONS: Measurement of THCCOOH in OF not only identifies cannabis exposure, but also minimizes the possibility of passive inhalation. THCCOOH may be a better analyte for detection of cannabis use.


Assuntos
Dronabinol/farmacocinética , Abuso de Maconha/metabolismo , Saliva/metabolismo , Detecção do Abuso de Substâncias/métodos , Adolescente , Adulto , Dronabinol/análise , Humanos , Masculino , Saliva/química , Fatores de Tempo , Adulto Jovem
7.
Clin Chem ; 55(12): 2180-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19833841

RESUMO

BACKGROUND: Delta(9)-tetrahydrocannabinol (THC) is the primary psychoactive constituent of cannabis and an active cannabinoid pharmacotherapy component. No plasma pharmacokinetic data after repeated oral THC administration are available. METHODS: Six adult male daily cannabis smokers resided on a closed clinical research unit. Oral THC capsules (20 mg) were administered every 4-8 h in escalating total daily doses (40-120 mg) for 7 days. Free and glucuronidated plasma THC, 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH) were quantified by 2-dimensional GC-MS during and after dosing. RESULTS: Free plasma THC, 11-OH-THC, and THCCOOH concentrations 19.5 h after admission (before controlled oral THC dosing) were mean 4.3 (SE 1.1), 1.3 (0.5), and 34.0 (8.4) microg/L, respectively. During oral dosing, free 11-OH-THC and THCCOOH increased steadily, whereas THC did not. Mean peak plasma free THC, 11-OH-THC, and THCCOOH concentrations were 3.8 (0.5), 3.0 (0.7), and 196.9 (39.9) mug/L, respectively, 22.5 h after the last dose. Escherichia coli beta-glucuronidase hydrolysis of 264 cannabinoid specimens yielded statistically significant increases in THC, 11-OH-THC, and THCCOOH concentrations (P < 0.001), but conjugated concentrations were underestimated owing to incomplete enzymatic hydrolysis. CONCLUSIONS: Plasma THC concentrations remained >1 mug/L for at least 1 day after daily cannabis smoking and also after cessation of multiple oral THC doses. We report for the first time free plasma THC concentrations after multiple high-dose oral THC throughout the day and night, and after Escherichia coli beta-glucuronidase hydrolysis. These data will aid in the interpretation of plasma THC concentrations after multiple oral doses.


Assuntos
Dronabinol/análogos & derivados , Dronabinol/farmacocinética , Administração Oral , Adolescente , Adulto , Dronabinol/administração & dosagem , Dronabinol/sangue , Escherichia coli/enzimologia , Cromatografia Gasosa-Espectrometria de Massas , Glucuronidase/metabolismo , Humanos , Hidrólise , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Drug Alcohol Depend ; 105(1-2): 24-32, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19631478

RESUMO

BACKGROUND: Generally, urinary 11-nor-9-carboxy-Delta9-tetrahydrocannabinol (THCCOOH) after alkaline hydrolysis is monitored to detect cannabis exposure, although last use may have been weeks prior in chronic cannabis users. Delta9-Tetrahydrocannabinol (THC) and 11-hydroxy-THC (11-OH-THC) concentrations in urine following Escherichia coli beta-glucuronidase hydrolysis were proposed as biomarkers of recent (within 8h) cannabis use. OBJECTIVE: To test the validity of THC and 11-OH-THC in urine as indicators of recent cannabis use. METHODS: Monitor urinary cannabinoid excretion in 33 chronic cannabis smokers who resided on a secure research unit under 24h continuous medical surveillance. All urine specimens were collected individually ad libidum for up to 30 days, were hydrolyzed with a tandem E. coli beta-glucuronidase/base procedure, and analyzed for THC, 11-OH-THC and THCCOOH by one- and two-dimensional-cryotrap gas chromatography mass spectrometry (2D-GCMS) with limits of quantification of 2.5 ng/mL. RESULTS: Extended excretion of THC and 11-OH-THC in chronic cannabis users' urine was observed during monitored abstinence; 14 of 33 participants had measurable THC in specimens collected at least 24h after abstinence initiation. Seven subjects had measurable THC in urine for 3, 3, 4, 7, 7, 12, and 24 days after cannabis cessation. 11-OH-THC and THCCOOH were detectable in urine specimens from one heavy, chronic cannabis user for at least 24 days. CONCLUSION: For the first time, extended urinary excretion of THC and 11-OH-THC is documented for at least 24 days, negating their effectiveness as biomarkers of recent cannabis exposure, and substantiating long terminal elimination times for urinary cannabinoids following chronic cannabis smoking.


Assuntos
Dronabinol/urina , Abuso de Maconha/urina , Detecção do Abuso de Substâncias/métodos , Adulto , Biomarcadores , Doença Crônica , Dronabinol/análogos & derivados , Etnicidade , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/urina , Adulto Jovem
9.
J Anal Toxicol ; 32(8): 562-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19007504

RESUMO

The time course of 11-nor-9-carboxy-Delta9-tetrahydrocannnabinol (THCCOOH) elimination in urine was characterized in 60 cannabis users during 24 h monitored abstinence on a closed research unit for up to 30 days. Six thousand, one hundred fifty-eight individual urine specimens were screened by immunoassay with values > or = 50 ng/mL classified as positive. Urine specimens were confirmed for THCCOOH by gas chromatography-mass spectrometry following base hydrolysis and liquid-liquid or solid-phase extraction. In 60%, the maximum creatinine normalized concentration occurred in the first urine specimen; in 40%, peaks occurred as long as 2.9 days after admission. Data were divided into three groups, 0-50, 51-150, and > 150 ng/mg, based on the creatinine corrected initial THCCOOH concentration. There were statistically significant correlations between groups and number of days until first negative and last positive urine specimens; mean number of days were 0.6 and 4.3, 3.2 and 9.7, and 4.7 and 15.4 days, respectively, for the three groups. These data provide guidelines for interpreting urine cannabinoid test results and suggest appropriate detection windows for differentiating new cannabis use from residual drug excretion.


Assuntos
Dronabinol/análogos & derivados , Abuso de Maconha/diagnóstico , Detecção do Abuso de Substâncias/métodos , Adulto , Dronabinol/urina , Feminino , Humanos , Masculino , Abuso de Maconha/urina
10.
Addict Biol ; 13(1): 105-17, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18201295

RESUMO

The present study examines the diagnostic challenges of identifying ante-mortem illicit substance use in human postmortem cases. Substance use, assessed by clinical case history reviews, structured next-of-kin interviews, by general toxicology of blood, urine and/or brain, and by scalp hair testing, identified 33 cocaine, 29 cannabis, 10 phencyclidine and nine opioid cases. Case history identified 42% cocaine, 76% cannabis, 10% phencyclidine and 33% opioid cases. Next-of-kin interviews identified almost twice as many cocaine and cannabis cases as Medical Examiner (ME) case histories, and were crucial in establishing a detailed lifetime substance use history. Toxicology identified 91% cocaine, 68% cannabis, 80% phencyclidine and 100% opioid cases, with hair testing increasing detection for all drug classes. A cocaine or cannabis use history was corroborated by general toxicology with 50% and 32% sensitivity, respectively, and with 82% and 64% sensitivity by hair testing. Hair testing corroborated a positive general toxicology for cocaine and cannabis with 91% and 100% sensitivity, respectively. Case history corroborated hair toxicology with 38% sensitivity for cocaine and 79% sensitivity for cannabis, suggesting that both case history and general toxicology underestimated cocaine use. Identifying ante-mortem substance use in human postmortem cases are key considerations in case diagnosis and for characterization of disorder-specific changes in neurobiology. The sensitivity and specificity of substance use assessments increased when ME case history was supplemented with structured next-of-kin interviews to establish a detailed lifetime substance use history, while comprehensive toxicology, and hair testing in particular, increased detection of recent illicit substance use.


Assuntos
Autopsia , Médicos Legistas , Drogas Ilícitas/análise , Transtornos Relacionados ao Uso de Substâncias/patologia , Líquidos Corporais/química , Cerebelo/química , Cerebelo/patologia , Transtornos Relacionados ao Uso de Cocaína/diagnóstico , Transtornos Relacionados ao Uso de Cocaína/patologia , Cabelo/química , Humanos , Abuso de Maconha/diagnóstico , Abuso de Maconha/patologia , Anamnese , Análise de Sequência com Séries de Oligonucleotídeos , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Transtornos Relacionados ao Uso de Opioides/patologia , Abuso de Fenciclidina/diagnóstico , Abuso de Fenciclidina/patologia , Sensibilidade e Especificidade , Transtornos Relacionados ao Uso de Substâncias/diagnóstico
11.
J Anal Toxicol ; 31(8): 477-85, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17988462

RESUMO

A sensitive and specific method for extraction and quantification of Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THCCOOH) in human urine was developed and fully validated. To ensure complete hydrolysis of conjugates and capture of total analyte content, urine samples were hydrolyzed by two methods in series. Initial hydrolysis was with Escherichia coli beta-glucuronidase (Type IX-A) followed by a second hydrolysis utilizing 10N NaOH. Specimens were adjusted to pH 5-6.5, treated with acetonitrile to precipitate protein, and centrifuged, and the supernatants were subjected to solid-phase extraction. Extracted analytes were derivatized with BSTFA and quantified by gas chromatography-mass spectrometry with electron impact ionization. Standard curves were linear from 2.5 to 300 ng/mL. Extraction efficiencies were 57.0-59.3% for THC, 68.3-75.5% for 11-OH-THC, and 71.5-79.7% for THCCOOH. Intra- and interassay precision across the linear range of the assay ranged from 0.1 to 4.3% and 2.6 to 7.4%, respectively. Accuracy was within 15% of target concentrations. This method was applied to the analysis of urine specimens collected from individuals participating in controlled administration cannabis studies, and it may be a useful analytical procedure for determining recency of cannabis use in forensic toxicology applications.


Assuntos
Dronabinol/análogos & derivados , Dronabinol/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fumar Maconha/metabolismo , Psicotrópicos/urina , Dronabinol/química , Glucuronidase/química , Humanos , Hidrólise , Psicotrópicos/química , Reprodutibilidade dos Testes , Hidróxido de Sódio/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Detecção do Abuso de Substâncias/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-15639444

RESUMO

Nicotine is rapidly and extensively metabolized in humans. We present an analytical method to simultaneously quantify nicotine, cotinine, norcotinine, and trans-3'-hydroxycotinine in human oral fluid. Solid phase extraction (SPE) and GC/MS/EI with selected ion monitoring (SIM) were utilized. Linearity ranged from 5 to 1000 ng/mL of oral fluid; correlation coefficients for calibration curves were >0.99. Recoveries were 90-115% nicotine, 76-117% cotinine, 88-101% norcotinine, and 67-77% trans-3'-hydroxycotinine. Intra-assay precision and accuracy ranged from 1.6 to 5.7% and 1.6 to 17.8%, respectively. Inter-assay precision and accuracy ranged from 4.3 to 10.2% and 0 to 12.8%, respectively. Suitable precision and accuracy were achieved for the simultaneous determination of nicotine and three metabolites in the oral fluid of smokers. This assay is applicable to pharmacokinetic studies of nicotine, cotinine, and trans-3'-hydroxycotinine from tobacco smokers and can be utilized for routine monitoring of tobacco smoke exposure. 3-Hydroxycotinine requires additional investigation to determine its usefulness as a biomarker for tobacco smoke exposure.


Assuntos
Cotinina/análogos & derivados , Cotinina/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nicotina/análise , Saliva/química , Feminino , Humanos , Gravidez , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fumar
13.
J Anal Toxicol ; 27(7): 386-401, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14606991

RESUMO

Although cocaine is typically the second-most identified drug of abuse in drug-testing programs, there is surprisingly little quantitative information on excretion patterns following different routes of administration. This report details the urinary excretion and terminal elimination kinetics for cocaine and eight metabolites [benzoylecgonine (BZE), ecgonine methylester (EME), norcocaine (NCOC), benzoylnorecgonine (BNE), m-hydroxy-BZE (m-HO-BZE), p-hydroxy-BZE (p-HO-BZE), m-hydroxy-COC (m-HO-COC), and p-hydroxy-COC (p-HO-COC)]. Six healthy males were administered approximately equipotent doses of cocaine by the intravenous (IV), smoking (SM), and inhalation (IN) routes of administration. Urine specimens were collected for a minimum of three days after drug administration, screened by immunoassay (EMIT and TDX, 300 ng/mL), and analyzed by GC-MS. Mean Cmax values were generally as follows: BZE > EME > COC > BNE approximately p-HO-BZE > m-HO-BZE > m-HO-COC > NCOC > p-HO-COC. Elimination half-lives for cocaine and metabolites were generally shorter following s.m., intermediate after i.v., and longest following i.n. administration. m-HO-BZE demonstrated the longest half-life (mean range 7.0-8.9 h), and cocaine displayed the shortest (2.4-4.0 h). Mean detection times were extended progressively by lowering cutoff concentrations. The maximum increases were approximately 55% at 50 ng/mL for the TDx assay (e.g., the detection time for the last consecutive positive changed from 32.8 h to 50.6 h for i.v. cocaine) and up to 39% for GC-MS at a cutoff concentration of 40 ng/mL (e.g., the detection time for the last consecutive positive changed from 34.8 h to 48.1 h for i.v. cocaine). Sensitivity, specificity, and predictive values for EMIT and TDx were comparable at the 300-ng/mL cutoff concentration; but at lower cutoff concentrations, predictive values of positive results for TDx were diminished indicating a higher risk of false-positive results, that is, positive results that failed to meet administrative cutoff criteria. Detection of positive results was significantly enhanced through the use of the "Zero Threshold Criteria Method", a method developed by the authors to differentiate false-negatives from true-negatives. The method was based on establishing mean immunoassay response (MIR) baselines and variance (SD) in assays of drug-free specimens. Arbitrary thresholds (MIR + 0.5 SD, MIR + 1 SD, MIR + 2 SD) were utilized to evaluate all negative specimens. Apparent true positives were identified by the presence of BZE at or above 40% GC-MS cutoff concentrations. With these criteria, up to 111 false-negative specimens were confirmed as true-positive specimens; this was in addition to the 208 true positives detected at recommended cutoff concentrations. This represents a 50% increase in positive detection rates through the use of this methodology. Such methodology is recommended for further evaluation by drug-testing programs for enhancement of positive detection rates and as an alternative to creatinine testing for dealing with dilute specimens that test negative by initial tests, but contain quantifiable concentrations of drugs of abuse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/urina , Cocaína , Detecção do Abuso de Substâncias/métodos , Administração por Inalação , Cocaína/administração & dosagem , Cocaína/metabolismo , Cocaína/urina , Estudos Cross-Over , Reações Falso-Negativas , Meia-Vida , Humanos , Injeções Intravenosas , Masculino , Distribuição Aleatória , Sensibilidade e Especificidade , Fumar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...