Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ann Surg ; 272(2): 384-392, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32675553

RESUMO

OBJECTIVE: To demonstrate the noninferiority of the fundamentals of robotic surgery (FRS) skills curriculum over current training paradigms and identify an ideal training platform. SUMMARY BACKGROUND DATA: There is currently no validated, uniformly accepted curriculum for training in robotic surgery skills. METHODS: Single-blinded parallel-group randomized trial at 12 international American College of Surgeons (ACS) Accredited Education Institutes (AEI). Thirty-three robotic surgery experts and 123 inexperienced surgical trainees were enrolled between April 2015 and November 2016. Benchmarks (proficiency levels) on the 7 FRS Dome tasks were established based on expert performance. Participants were then randomly assigned to 4 training groups: Dome (n = 29), dV-Trainer (n = 30), and DVSS (n = 32) that trained to benchmarks and control (n = 32) that trained using locally available robotic skills curricula. The primary outcome was participant performance after training based on task errors and duration on 5 basic robotic tasks (knot tying, continuous suturing, cutting, dissection, and vessel coagulation) using an avian tissue model (transfer-test). Secondary outcomes included cognitive test scores, GEARS ratings, and robot familiarity checklist scores. RESULTS: All groups demonstrated significant performance improvement after skills training (P < 0.01). Participating residents and fellows performed tasks faster (DOME and DVSS groups) and with fewer errors than controls (DOME group; P < 0.01). Inter-rater reliability was high for the checklist scores (0.82-0.97) but moderate for GEARS ratings (0.40-0.67). CONCLUSIONS: We provide evidence of effectiveness for the FRS curriculum by demonstrating better performance of those trained following FRS compared with controls on a transfer test. We therefore argue for its implementation across training programs before surgeons apply these skills clinically.


Assuntos
Competência Clínica , Simulação por Computador , Procedimentos Cirúrgicos Robóticos/educação , Treinamento por Simulação/métodos , Especialidades Cirúrgicas/educação , Análise de Variância , Currículo , Feminino , Humanos , Masculino , Medição de Risco , Método Simples-Cego , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...