Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Rep ; 68(3): 620-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26991376

RESUMO

BACKGROUND: The aim of the present study was to observe the concomitant activation of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) pathways by TRPV4 channel agonist GSK1016790A in the rat pulmonary artery and explore the mechanism by which NO synthase inhibition attenuates EDHF-mediated relaxation in endothelium-intact rat pulmonary artery. METHODS: Tension experiments were conducted on the pulmonary artery from male Wistar rats. RESULTS: TRPV4 channel agonist GSK1016790A (GSK) caused concentration-dependent relaxation (Emax 86.9±4.6%; pD2 8.7±0.24) of the endothelium-intact rat pulmonary artery. Combined presence of apamin and TRAM-34 significantly attenuated the relaxation (Emax 61.1±6.0%) to GSK. l-NAME (100µM) significantly attenuated (8.2±2.9%) the relaxation response to GSK that was resistant to apamin plus TRAM-34. However, presence of ICI192605 or furegrelate alongwith l-NAME revealed the GSK-mediated EDHF-response (Emax of 28.5±5.2%; Emax 24.5±4.3%) in this vessel, respectively. Further, these two TxA2 modulators (ICI/furegrelate) alongwith l-NAME had no effect on SNP-induced endothelium-independent relaxation in comparison to l-NAME alone. This EDHF-mediated relaxation was sensitive to inhibition by K(+) channel blockers apamin and TRAM-34 or 60mMK(+) depolarizing solution. Further, combined presence of apamin and TRAM-34 in U46619 pre-contracted pulmonary arterial rings significantly reduced the maximal relaxation (Emax 71.6±6.9%) elicited by GSK, but had no effect on the pD2 (8.1±0.03) of the TRPV4 channel agonist in comparison to controls (Emax, 92.4±4.3% and pD2, 8.3±0.06). CONCLUSION: The present study suggests that NO and EDHF are released concomitantly and NO synthase inhibition attenuates GSK-induced EDHF response through thromboxane pathway in the rat pulmonary artery.


Assuntos
Fatores Biológicos/fisiologia , Leucina/análogos & derivados , Artéria Pulmonar/fisiologia , Receptores de Tromboxano A2 e Prostaglandina H2/fisiologia , Sulfonamidas/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Apamina/farmacologia , Benzofuranos/farmacologia , Dioxanos/farmacologia , Relação Dose-Resposta a Droga , Técnicas In Vitro , Leucina/antagonistas & inibidores , Leucina/farmacologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Potássio/farmacologia , Pirazóis/farmacologia , Ratos , Receptores de Tromboxano A2 e Prostaglandina H2/efeitos dos fármacos , Sulfonamidas/antagonistas & inibidores , Canais de Cátion TRPV/agonistas , Vasodilatação/efeitos dos fármacos
2.
Cardiovasc Toxicol ; 15(3): 250-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25420456

RESUMO

The present study was undertaken to evaluate the effect of alcoholic extract of Dalbergia sissoo leaf extract (DSE) on isoproterenol (ISP)-induced myocardial injury in rats. Evaluation of three doses (30, 100 and 300 mg/kg of body weight) of DSE was done in ISP-treated rats. ISP was used at 85 mg/kg body weight by subcutaneous route for two subsequent days to induce myocardial injury in rats. Assessment of myocardial injury was done by estimation of different cardiac injury markers like LDH, CK-MB. Serum cholesterol, LDL, HDL, triglycerides in serum, myocardial infarcted area, oxidative stress and histopathology in heart tissue were also assessed in rats. Mean arterial pressure and heart rate were recorded in all the groups. Rats pretreated with DSE (30, 100 and 300 mg/kg of body weight) showed significant (p < 0.05-0.001) improvement in the heart weight/body weight ratio, myocardial infarcted areas, heart rate and mean arterial pressure in ISP-induced myocardial injury. DSE showed significant (p < 0.05-0.001) improvement in serum LDH, CK-MB, cholesterol, LDL and triglyceride levels at all the dose levels. However, DSE pretreatment had no significant effect on serum HDL level. Pretreatment with DSE (30, 100 and 300 mg/kg body weight) showed significant (p < 0.001) reduction in MDA level in comparison with myocardial injured rats. Further, antioxidant potential was also improved in terms of improved activities of reduced glutathione, superoxide dismutase and catalase with the DSE pretreatment. Histopathology also showed significant improvement in heart tissue. The study suggests that DSE showed beneficial effect in ISP-induced myocardial injury in rats.


Assuntos
Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Dalbergia , Isoproterenol/toxicidade , Extratos Vegetais/uso terapêutico , Folhas de Planta , Animais , Cardiomiopatias/metabolismo , Cardiotônicos/toxicidade , Masculino , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA