Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38551038

RESUMO

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting elderly individuals, characterized by progressive cognitive decline leading to dementia. This review examines the challenges posed by anatomical and biochemical barriers such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and p-glycoproteins in delivering effective therapeutic agents to the central nervous system (CNS) for AD treatment. This article outlines the fundamental role of acetylcholinesterase inhibitors (AChEIs) and NMDA(N-Methyl-D-Aspartate) receptor antagonists in conventional AD therapy and highlights their limitations in terms of brain-specific delivery. It delves into the intricacies of BBB and pglycoprotein-mediated efflux mechanisms that impede drug transport to the CNS. The review further discusses cutting-edge nanomedicine-based strategies, detailing their composition and mechanisms that enable effective bypassing of BBB and enhancing drug accumulation in brain tissues. Conventional therapies, namely AChEIs and NMDA receptor antagonists, have shown limited efficacy and are hindered by suboptimal brain penetration. The advent of nanotechnology-driven therapeutic delivery systems offers promising strategies to enhance CNS targeting and bioavailability, thereby addressing the shortcomings of conventional treatments. Various nanomedicines, encompassing polymeric and metallic nanoparticles (MNPs), solid lipid nanoparticles (SLNs), liposomes, micelles, dendrimers, nanoemulsions, and carbon nanotubes, have been investigated for their potential in delivering anti-AD agents like AChEIs, polyphenols, curcumin, and resveratrol. These nanocarriers exhibit the ability to traverse the BBB and deliver therapeutic payloads to the brain, thereby holding immense potential for effective AD treatment and early diagnostic approaches. Notably, nanocarriers loaded with AChEIs have shown promising results in preclinical studies, exhibiting improved therapeutic efficacy and sustained release profiles. This review underscores the urgency of innovative drug delivery approaches to overcome barriers in AD therapy. Nanomedicine-based solutions offer a promising avenue for achieving effective CNS targeting, enabling enhanced bioavailability and sustained therapeutic effects. As ongoing research continues to elucidate the complexities of CNS drug delivery, these advancements hold great potential for revolutionizing AD treatment and diagnosis.

2.
Med Chem ; 20(1): 78-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37594099

RESUMO

INTRODUCTION: Inflammation can be defined as a complex biological response that is produced by body tissues to harmful agents like pathogens, irritants, and damaged cells and thereby acts as a protective response incorporating immune cells, blood vessels, and molecular mediators. Histamine, serotonin, bradykinin, leukotrienes (LTB4), prostaglandins (PGE2), prostacyclins, reactive oxygen species, proinflammatory cytokines like IL-1, IL-11, TNF- anti-inflammatory cytokines like IL-4, IL-10, IL-11, IL-6 and IL-13, etc. all have different effects on both pro and anti-inflammatory mediators. Incorporation of combinatorial chemistry and computational studies have helped the researchers to design xanthones moieties with high selectivity that can serve as a lead compound and help develop potential compounds that can act as effective COX-2 inhibitors. The study aims to design and develop different series of substituted hydroxyxanthone derivatives with anti-inflammatory potential. METHODS: The partially purified synthetic xanthone derivatives were orally administered to the carrageenan induced paw oedemic rat models at the dose of 100 mg/kg, and their effect in controlling the degree of inflammation was measured at the time interval of 30 min, 1, 2, 3, 4 and 6 hrs. respectively. Further, these compounds were also subjected to modern analytical studies like UV, IR, NMR and mass spectrometry or their characterization. RESULTS: The results drawn out of the in silico, in vitro, in vivo and analytical studies concluded that the hydroxyxanthone derivatives can obstruct the enzyme COX-2 and produce anti-inflammatory action potentially. CONCLUSION: With the aim to evaluate the compounds for their anti-inflammatory activity, it was observed that the newly designed xanthonic compounds also possess a safe toxicity margin and hence can be utilized by the researchers to develop hybrid xanthonic moieties that can specifically target the enzyme COX-2.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Xantonas , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas , Edema/induzido quimicamente , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-11/metabolismo , Relação Quantitativa Estrutura-Atividade , Xantonas/farmacologia
3.
Int J Biol Macromol ; 257(Pt 1): 128573, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052290

RESUMO

This study explores the eco-friendly biosynthesis of silver nanoparticles (AgNPs) utilizing Camellia sinensis leaf extract. We assess their antioxidant and antibacterial properties. Furthermore, we impregnated AgNPs into 2 % chitosan (CHS) gel and assessed their wound-healing potential in Escherichia coli and Staphylococcus aureus infected wounds. Optimized AgNPs demonstrated a mean particle size of 36.90 ± 1.22 nm and a PDI of 0.049 ± 0.001. Green-synthesized AgNPs exhibited enhanced free radical inhibition (IC50: 31.45 µg/mL, 34.01 µg/mL, 27.40 µg/mL) compared to leaf extract (IC50: 52.67 µg/mL, 59.64 µg/mL, 97.50 µg/mL) in DPPH, hydrogen peroxide, and nitric oxide free radical scavenging assays, respectively. The MIC/MBC values of AgNPs against E. coli and S. aureus were 5 ppm/ 7.5 ppm and 10 ppm/ 15 ppm, respectively. Furthermore, our study showed that green-synthesized AgNPs at MIC significantly reduced the biofilm production of E. coli (70.37 %) and S. aureus (67.40 %). The CHS/AgNPs gel exhibited potent wound healing activities, comparable to a commercial cream with the re-epithelialization period of 8.16 ± 0.75. Histological analysis demonstrated enhanced skin regeneration with a thicker epidermal layer, well-defined papillary dermal structure, and organized collagen fibers. In summary, these findings hold promise for addressing bacterial infections, particularly those associated with biofilms-related wound infections.


Assuntos
Camellia sinensis , Quitosana , Nanopartículas Metálicas , Prata/química , Staphylococcus aureus , Quitosana/química , Nanopartículas Metálicas/química , Escherichia coli , Antibacterianos/química , Radicais Livres , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
4.
J Biomol Struct Dyn ; : 1-30, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975405

RESUMO

The DNA topoisomerase II (topo II) enzyme plays an important role in the replication, recombination, and repair of DNA. Despite their widespread applications in cancer therapy, new, selective, and potent topo II inhibitors with better pharmaceutical profiles are needed to handle drug resistance and severe adverse effects. In this respect, an array of 36 new anticancer compounds was designed based on a Xanthone core tethered to multifunctional Pyridine-amines and Imidazole scaffold via alkyl chain linkers. An integrated in silico approach was used to understand the structural basis and mechanism of inhibition of the hybrid xanthone derivatives. In this study, we established an initial virtual screening workflow based on pharmacophore mapping, docking, and cancer target association to validate the target selection process. Next, a simulation-based docking was conducted along with pharmacokinetic analysis to filter out the five best compounds (7, 10, 25, 27, and 30) having binding energies within the range of -60.45 to -40.97 kcal/mol. The screened compounds were further subjected to molecular dynamics simulation for 200 ns followed by MM-GBSA and ligand properties analysis to assess the stability and binding affinity to hTOP2α. The top-ranking hits 3,7-bis(3-(2-aminopyridin-3-ylhydroxy)propoxy)-1-hydroxy-9H-xanthen-9-one (ligand 7) and 3,8-bis(3-(2-aminopyridin-3-ylhydroxy)propoxy)-1-hydroxy-9H-xanthen-9-one (ligand 25) were found to have no toxicity, optimum pharmacokinetic and, DFT properties and stable intermolecular interactions with the active site of hTopo IIα protein. In conclusion, further in vitro and in vivo experimental validation of the identified lead molecules is warranted for the discovery of new human Topoisomerase 2 alpha inhibitors.Communicated by Ramaswamy H. Sarma.

5.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37259329

RESUMO

Acetylcholine (ACh) neurotransmitter of the cholinergic system in the brain is involved in learning, memory, stress responses, and cognitive functioning. It is hydrolyzed into choline and acetic acid by two key cholinesterase enzymes, viz., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A loss or degeneration of cholinergic neurons that leads to a reduction in ACh levels is considered a significant contributing factor in the development of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD). Numerous studies have shown that cholinesterase inhibitors can raise the level of ACh and, therefore, enhance people's quality of life, and, at the very least, it can temporarily lessen the symptoms of NDs. 1,2,3-triazole, a five-membered heterocyclic ring, is a privileged moiety, that is, a central scaffold, and is capable of interacting with a variety of receptors and enzymes to exhibit a broad range of important biological activities. Recently, it has been clubbed with other pharmacophoric fragments/molecules in hope of obtaining potent and selective AChE and/or BuChE inhibitors. The present updated review succinctly summarizes the different synthetic strategies used to synthesize the 1,2,3-triazole moiety. It also highlights the anticholinesterase potential of various 1,2,3-triazole di/trihybrids reported in the past seven years (2015-2022), including a rationale for hybridization and with an emphasis on their structural features for the development and optimization of cholinesterase inhibitors to treat NDs.

6.
J Diabetes Metab Disord ; 22(1): 119-133, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37255773

RESUMO

Objectives: The objective of the present study is to discuss the use of nanomaterials like nanosensors for diagnosing Diabetes and highlight their applications in the treatment of Diabetes. Methods: Diabetes mellitus (D.M.) is a group of metabolic diseases characterized by hyperglycemia. Orally administered antidiabetic drugs like glibenclamide, glipalamide, and metformin can partially lower blood sugar levels, but long-term use causes kidney and liver damage. Recent breakthroughs in nanotheranostics have emerged as a powerful tool for diabetes treatment and diagnosis. Results: Nanotheranostics is a rapidly developing area that can revolutionize diabetes diagnosis and treatment by combining therapy and imaging in a single probe, allowing for pancreas-specific drug and insulin delivery. Nanotheranostic in Diabetes research has facilitated the development of improved glucose monitoring and insulin administration modalities, which promise to improve the quality of life for people with Diabetes drastically. Further, nanomaterials like nanocarriers and unique functional nanomaterials used as nano theranostics tools for treating Diabetes will also be highlighted. Conclusion: The nanosensors discussed in this review article will encourage researchers to develop innovative nanomaterials with novel functionalities and properties for diabetes detection and treatment.

7.
Front Pharmacol ; 14: 1186060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251328

RESUMO

Obesity is fast growing as a global pandemic and is associated with numerous comorbidities like cardiovascular disease, hypertension, diabetes, gastroesophageal reflux disease, sleep disorders, nephropathy, neuropathy, as well as asthma. Studies stated that obese asthmatic subjects suffer from an increased risk of asthma, and encounter severe symptoms due to a number of pathophysiology. It is very vital to understand the copious relationship between obesity and asthma, however, a clear and pinpoint pathogenesis underlying the association between obesity and asthma is scarce. There is a plethora of obesity-asthma etiologies reported viz., increased circulating pro-inflammatory adipokines like leptin, resistin, and decreased anti-inflammatory adipokines like adiponectin, depletion of ROS controller Nrf2/HO-1 axis, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) associated macrophage polarization, hypertrophy of WAT, activation of Notch signaling pathway, and dysregulated melanocortin pathway reported, however, there is a very limited number of reports that interrelates these pathophysiologies. Due to the underlying complex pathophysiologies exaggerated by obese conditions, obese asthmatics respond poorly to anti-asthmatic drugs. The poor response towards anti-asthmatic drugs may be due to the anti-asthmatics approach only that ignores the anti-obesity target. So, aiming only at the conventional anti-asthmatic targets in obese-asthmatics may prove to be futile until and unless treatment is directed towards ameliorating obesity pathogenesis for a holistic approach towards amelioration of obesity-associated asthma. Herbal medicines for obesity as well as obesity-associated comorbidities are fast becoming safer and more effective alternatives to conventional drugs due to their multitargeted approach with fewer adverse effects. Although, herbal medicines are widely used for obesity-associated comorbidities, however, a limited number of herbal medicines have been scientifically validated and reported against obesity-associated asthma. Notable among them are quercetin, curcumin, geraniol, resveratrol, ß-Caryophyllene, celastrol, tomatidine to name a few. In view of this, there is a dire need for a comprehensive review that may summarize the role of bioactive phytoconstituents from different sources like plants, marine as well as essential oils in terms of their therapeutic mechanisms. So, this review aims to critically discuss the therapeutic role of herbal medicine in the form of bioactive phytoconstituents against obesity-associated asthma available in the scientific literature to date.

8.
Heliyon ; 9(4): e15347, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37101636

RESUMO

Nonalcoholic fatty liver disease (NAFLD), a chronic liver condition affects a large number of people around the world with a frequency of 25% of all the chronic liver disease worldwide. Several targets viz. anti-inflammatory, anti-apoptotic and, anti-fibrotic factors, anti-oxidant and insulin-sensitizing pathways, metabolic regulators as well as repurposing traditional medications have been studied for the pharmacologic therapy of NAFLD. Newer pharmacotherapies like caspases blockade, agonists of PPAR and farnesoid X receptor agonists are currently being investigated in treating human NAFLD. However, NAFLD has no FDA-approved pharmacological therapy, therefore there is a considerable unmet therapy need. Apart from the conventional treatment regime, the current approaches to treating NAFLD include lifestyle interventions including healthy diet with adequate nutrition and physical activity. Fruits are known to play a key role in the well-being of human health. Fruits are loaded with a repertoire of bioactive phytoconstituents like catechins, phytosterols, proanthocyanidin, genestin, daidzen, resveratrol, magiferin found in fruits like pear, apricot, strawberries, oranges, apples, bananas, grapes, kiwi, pineapple, watermelon, peach, grape seed and skin, mango, currants, raisins, dried dates, passion fruit and many more. These bioactive phytoconstituents are reported to demonstrate promising pharmacological efficacy like reduction in fatty acid deposition, increased lipid metabolism, modulation of insulin signaling pathway, gut microbiota and hepatic inflammation, inhibition of histone acetyltransferase enzymatic activity to name a few. Not only fruits, but their derivatives like oils, pulp, peel, or their preparations are also found to be equally beneficial in various liver diseases like NAFLD, NASH. Although most of the fruits contains potent bioactive phytoconstituents, however, the presence of sugar in fruits put a question mark on the ameliorative property of the fruits and there has been contrasting reports on the glycemic control post fruit consumption in type 2 diabetic patients. This review is an attempt to summarize the beneficial effects of fruit phytoconstituents on NAFLD based on epidemiological, clinical and experimental evidence, focusing especially on their mechanisms of action.

9.
Med Chem ; 19(8): 757-784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36573047

RESUMO

BACKGROUND: Xanthones, natural or synthetic, due to their wide range of biological activities, have become an interesting subject of investigation for many researchers. Xanthonic scaffold has proven to have a vital role in anticancer drug development since many of its derivatives have shown anticancer activities on various cell lines. In addition, targeting epigenetic markers in cancer has yielded promising results. There have also been reports on the impact of xanthone and related polyphenolic compounds on epigenetics markers in cancer prevention and therapy. OBJECTIVE: The objective of this review is to comprehensively highlight the main natural and nonnatural sources of xanthones having potential anti-cancer effects along with their key structural elements, structure-activity relationships (SARs), mechanisms of action, and epigenetic profile of xanthone- based anti-cancer compounds. The challenges and future directions of xanthone-based therapies are also discussed briefly. METHOD: The methods involved in the preparation of the present review included the collection of all recent information up to November 2021 from various scientific databases, indexed periodicals, and search engines such as Medline Scopus, Google Scholar, PubMed, PubMed Central, Web of Science, and Science Direct. RESULTS: Exploration of the diversity of the xanthone scaffold led to the identification of several derivatives having prominent anti-cancer activity. Their unique structural diversity and synthetic modifications showed the ongoing endeavour of enriching the chemical diversity of the xanthone molecular framework to discover pharmacologically interesting compounds. However, studies regarding their modes of action, pharmacokinetic properties, clinical data, epigenetics, and safety are limited. CONCLUSION: Elucidation of the exact biological mechanisms and the associated targets of xanthones will yield better opportunities for these compounds to be developed as potential anticancer drugs. Further clinical studies with conclusive results are required to implement xanthones as treatment modalities in cancer.


Assuntos
Antineoplásicos , Xantonas , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular , Xantonas/farmacologia , Xantonas/química , Desenvolvimento de Medicamentos
10.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431808

RESUMO

Diabetes mellitus is one of the most prevalent metabolic disorders characterized by hyperglycemia due to impaired glucose metabolism. Overproduction of free radicals due to chronic hyperglycemia may cause oxidative stress, which delays wound healing in diabetic conditions. For people with diabetes, this impeded wound healing is one of the predominant reasons for mortality and morbidity. The study aimed to develop an Ocimum sanctum leaf extract-mediated green synthesis of titanium dioxide (TiO2) nanoparticles (NPs) and further incorporate them into 2% chitosan (CS) gel for diabetic wound healing. UV-visible spectrum analysis recorded the sharp peak at 235 and 320 nm, and this was the preliminary sign for the biosynthesis of TiO2 NPs. The FTIR analysis was used to perform a qualitative validation of the biosynthesized TiO2 nanoparticles. XRD analysis indicated the crystallinity of TiO2 NPs in anatase form. Microscopic investigation revealed that TiO2 NPs were spherical and polygonal in shape, with sizes ranging from 75 to 123 nm. The EDX analysis of green synthesized NPs showed the presence of TiO2 NPs, demonstrating the peak of titanium ion and oxygen. The hydrodynamic diameter and polydispersity index (PDI) of the TiO2 NPs were found to be 130.3 nm and 0.237, respectively. The developed TiO2 NPs containing CS gel exhibited the desired thixotropic properties with pseudoplastic behavior. In vivo wound healing studies and histopathological investigations of healed wounds demonstrated the excellent wound-healing efficacy of TiO2 NPs containing CS gel in diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Nanopartículas , Óleos Voláteis , Ratos , Animais , Titânio/farmacologia , Ocimum sanctum/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Nanopartículas/ultraestrutura , Cicatrização , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
11.
Biomed Pharmacother ; 149: 112901, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36068771

RESUMO

Despite enormous development in the field of drug development, cancer still remains elusive. Compromised immunity stands as a roadblock to the successful pharmacological execution of anti-cancer drugs used clinically currently. Recently some breakthrough cancer treatment strategy like nano-formulation, extracellular vesicles treatment, natural antioxidant therapy, targeted immunotherapy, gene therapy, thermal ablation and magnetic hyperthermia, and pathomics and radiomics has been developed and tested pre-clinically as well as clinically. However, clinical efficacy of such therapies is yet to establish and some are too costly to be utilized by patients from poor and developing countries. At this juncture, researchers are heading towards the search of medicines from natural sources that is higher safety margin and multitarget pharmacological efficacy compared to conventional treatments. Mushroom is used traditionally as food as well as drug since time immemorial due to its immunomodulatory effect which is loaded with proteins, low fat content and cholesterol. Mushrooms are recommended as one of the best vegetarian diets for immunosuppressed cancer and HIV/AIDS patients. Mushrooms are well-known for their anti-cancer activity that impacts hematopoietic stem cells, lymphocytes, macrophages, T cells, dendritic cells (DCs), and natural killer (NK) cells in the immune system. This comprehensive review article emphasizes on the molecular mechanisms of cancer genesis, conventional anti-cancer therapy as well as reported some significant breakthrough in anti-cancer drug development, anti-cancer activity of some selected species of mushrooms and their bioactive phytoconstituents followed by a brief discussion of recent anti-cancer efficacy of some metallic nanoparticles loaded with mushrooms.


Assuntos
Agaricales , Antineoplásicos , Neoplasias , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Imunidade , Imunoterapia , Neoplasias/tratamento farmacológico
12.
Struct Chem ; 33(5): 1409-1422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669793

RESUMO

Huge vaccination drives are underway around the world for the ongoing COVID-19 pandemic. However, the search for antiviral drugs is equally crucial. As new drug discovery is a time-consuming process, repurposing of existing drugs or developing drug candidates against SARS-CoV-2 will make the process faster. Considering this, 63 approved and developing antimalarial compounds were selected to screen against main protease (Mpro) and papain-like protease (PLpro) of SARS-CoV-2 using in silico methods to find out possible new drug candidate(s). Out of 63 compounds, epoxomicin showed the best binding affinity against the Mpro with CDocker energy of - 57.511 kcal/mol without any toxic effect. This compound was further taken for molecular dynamic simulation study, where the Mpro-epoxomicin complex was found to be stable with binding free energy - 79.315 kcal/mol. The possible inhibitory potential of the selected compound was determined by 3D-QSAR analysis and found to be 0.4447 µM against SARS-CoV-2 Mpro. Finally, the structure activity relationship of the compound was analyzed and two fragments responsible for overall good binding affinity of the compound at the active site of Mpro were identified. This study suggests a safe antimalarial drug, namely epoxomicin, as a probable inhibitor of SARS-CoV-2 Mpro which needs further validation by in vitro/in vivo studies before clinical use. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-01916-0.

13.
Curr Drug Discov Technol ; 19(4): e310322202888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35362385

RESUMO

BACKGROUND: Cancer-induced mortality is increasingly prevalent globally, which skyrocketed the necessity to discover new/novel, safe and effective anticancer drugs. Cancer is characterized by the continuous multiplication of cells in the human, which is unable to control. Scientific research is drawing its attention toward naturally-derived bioactive compounds as they have fewer side effects compared to the current synthetic drugs used for chemotherapy. OBJECTIVE: Drugs isolated from natural sources and their role in the manipulation of epigenetic markers in cancer are discussed briefly in this review article. METHODS: With advancing medicinal plant biotechnology and microbiology in the past century, several anticancer phytomedicines were developed. Modern pharmacopeia contains at least 25% herbal-based remedies, including clinically used anticancer drugs. These drugs mainly include the podophyllotoxin derivatives vinca alkaloids, curcumin, mistletoe plant extracts, taxanes, camptothecin, combretastatin, and colchicine artesunate, homoharringtonine, ellipticine, roscovitine, maytansine, tapsigargin,and bruceantin. RESULTS: Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from marine sources and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates. They have been evaluated for their anticancer activity on cells and experimental animal models and used chemotherapy.Drug-induced manipulation of epigenetic markers plays an important role in the treatment of cancer. CONCLUSION: The development of a new drug from isolated bioactive compounds of plant sources has been a feasible way to lower the toxicity and increase their effectiveness against cancer. Potential anticancer therapeutic leads obtained from various ethnomedicinal plants, foods, marine, and microorganisms are showing effective yet realistically safe pharmacological activity. This review will highlight important plant-based bioactive compounds like curcumin, stilbenes, terpenes, other polyphenolic phyto-compounds, and structurally related families that are used to prevent/ ameliorate cancer. However, a contribution from all possible fields of science is still a prerequisite for discovering safe and effective anticancer drugs.


Assuntos
Antineoplásicos , Produtos Biológicos , Curcumina , Neoplasias , Plantas Medicinais , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico
14.
Clin Exp Pharmacol Physiol ; 48(11): 1523-1536, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314522

RESUMO

Mast cell activation is initiated by two signalling pathways: immunoglobulin E (IgE)-dependent and IgE-independent pathway. It is reported that the IgE-independent type or pseudo-allergy pathway gets activated by G-protein-dependent activation of the mast cell. Recently, adiponectin (APN) receptors, AdipoR1, and AdipoR2 have been identified as G-protein-coupled receptors (GPCRs). Interestingly, APN replenishment is reported to activate the Nrf2/HO-1 signalling axis. However, no study has been performed interlinking the role of APN and the Nrf2/HO-1 signalling axis in pseudo-allergic reaction. In the present study, we evaluated the anti-pseudo-allergic effects of ß-caryophyllene, an FDA-approved food additive, in activating AdipoR1/AdipoR2 and Nrf2/HO-1 axis signalling pathway. Compound 48/80 (C48/80)-induced systemic and cutaneous anaphylaxis-like shock in BALB/c mice was performed to assess the efficacy of ß-caryophyllene (BCP). To assess the effect of BCP in anaphylactic hypotension, mean arterial pressure was measured in Wistar rats. Inhibitory properties of BCP in mast cell degranulation were estimated in rat peritoneal mast cells (RPMCs). ELISA was performed to estimate interleukin (IL)-6, tumour necrosis factor (TNF), IL-1ß, IgE, ovalbumin (OVA)-IgE and APN and western blotting for protein expression of Nrf2/HO-1 and AdipoR1-AdipoR2. BCP dose-dependently inhibited systemic and cutaneous anaphylaxis-like shock induced by C48/80. BCP dose-dependently inhibited the mast cell degranulation followed by inhibition of histamine release. Also BCP dose-dependently activated the Nrf2/HO-1 and AdipoR1-AdipoR2 signalling axis pathway. Moreover, BCP reversed the drop in blood pressure when the haemodynamic parameters were accessed. Our findings suggest that BCP is a potent AdipoR1/AdipoR2-Nrf2/HO-1 axis pathway agonist that may suppress the IgE-independent pathway towards allergic response to secretagogues.


Assuntos
p-Metoxi-N-metilfenetilamina
15.
Phytomedicine ; 89: 153610, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34175589

RESUMO

BACKGROUND: Obesity worsens airway hyperresponsiveness (AHR) in asthmatic subjects by up-regulating macrophage polarization that leads to excessive secretion of pro-inflammatory adipokines from white adipose tissue followed by generation of oxidative stress in the respiratory system. Treatment through conventional signaling pathways proved to be inadequate in obese asthmatics, so a therapeutical approach through a non-conventional pathway may prove to be effective. PURPOSE: This study aimed to investigate the efficacy of a FDA-approved food additive, ß-caryophyllene (BCP) in obesity-associated AHR. METHOD: A repertoire of protein expression, cytokine and adiponectin estimation, oxidative stress assays, histopathology, and fluorescence immune-histochemistry were performed to assess the efficacy of BCP in C57BL/6 mice model of obesity-associated AHR. Additionally, human adipocyte was utilized to study the effect of BCP on macrophage polarization in Boyden chamber cell culture inserts. RESULTS: Obesity-associated AHR is ameliorated by administration of BCP by inhibition of the macrophage polarization by activation of AMPKα, Nrf2/HO-1 and AdipoR1 and AdipoR2 signaling pathway, up-regulation of adiponectin, GLP-1, IFN-γ, SOD, catalase and down-regulation of NF-κB, leptin, IL-4, TNF, and IL-1ß. Browning of eWAT by induction of thermogenesis and activation of melanocortin pathway also contributed to the amelioration of obesity-associated AHR. We conclude that BCP ameliorated the obesity-associated AHR via inhibition of macrophage polarization, activation of AMPKα, Nrf2/HO-1, and up-regulation of AdipoR1 and AdipoR2 expression and down-regulation of NFκB expression in lung of animal. CONCLUSION: Being an FDA-approved food additive, BCP may prove to be a safe and potential agent against obesity-associated AHR.


Assuntos
Adipócitos/efeitos dos fármacos , Obesidade , Sesquiterpenos Policíclicos/farmacologia , Hipersensibilidade Respiratória , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/tratamento farmacológico , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/etiologia
16.
Curr Comput Aided Drug Des ; 17(1): 69-82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31878860

RESUMO

BACKGROUND: Development of resistance by the malaria parasite Plasmodium falciparum has created challenges in the eradication of this deadly infectious disease. Hence newer strategies are adopted to combat this disease and simultaneously, new lead/hit identification is going on worldwide to develop new chemotherapeutic agents against malaria. OBJECTIVE: In this study, 44 flavonoids found mainly in the fruit juice of Citrus species having traditional use in malaria-associated fever were selected for in silico multiple-target directed screening against three vital targets of the parasite namely dihydroorotate dehydrogenase (PfDHODH), dihydrofolate reductase thymidine synthase (PfDHFR-TS) and plasma membrane P-type cation translocating ATPase (PfATP4) to find out new lead molecule(s). METHODS: The in silico screening was carried out using different protocols of the Biovia Discovery Studio 2018 software and Network analyzer plugin of Cytoscape 3.6.0 followed by in vitro screening of the best lead. RESULTS: After screening, CF8 or luteolin was found to have good binding affinity against PfDHODH and PfATP4 with -CDocker energy 42.2719 and 33.1447 with respect to their cocrystal ligands. These findings were also supported by structure-based pharmacophore, DFT (Density Functional Theory) study and finally by in vitro screening of the lead with IC50 values of 8.23 µm and 12.41 µm against 3D7 (chloroquine-sensitive) and RKL-9 (chloroquine-resistant) strain of P. falciparum, respectively. CONCLUSION: Our study found a moderately active lead molecule with the predicted mode of action which can be utilized to design some new derivatives with more safety and efficacy by targeting the two enzymes.


Assuntos
Antimaláricos/farmacologia , Citrus/química , Flavonoides/farmacologia , Plasmodium falciparum/enzimologia , Antimaláricos/isolamento & purificação , Cloroquina/farmacologia , Simulação por Computador , Teoria da Densidade Funcional , Resistência a Medicamentos , Flavonoides/administração & dosagem , Flavonoides/isolamento & purificação , Concentração Inibidora 50 , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos
17.
Mol Divers ; 25(3): 1745-1759, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33236176

RESUMO

Although vaccine development is being undertaken at a breakneck speed, there is currently no effective antiviral drug for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19. Therefore, the present study aims to explore the possibilities offered by naturally available and abundant flavonoid compounds, as a prospective antiviral drug to combat the virus. A library of 44 citrus flavonoids was screened against the highly conserved Main Protease (Mpro) of SARS-CoV-2 using molecular docking. The compounds which showed better CDocker energy than the co-crystal inhibitor of Mpro were further revalidated by flexible docking within the active site; followed by assessment of drug likeness and toxicity parameters. The non-toxic compounds were further subjected to molecular dynamics simulation and predicted activity (IC50) using 3D-QSAR analysis. Subsequently, hydrogen bonds and dehydration analysis of the best compound were performed to assess the binding affinity to Mpro. It was observed that out of the 44 citrus flavonoids, five compounds showed lower binding energy with Mpro than the co-crystal ligand. Moreover, these compounds also formed H-bonds with two important catalytic residues His41 and Cys145 of the active sites of Mpro. Three compounds which passed the drug likeness filter showed stable conformation during MD simulations. Among these, the lowest predicted IC50 value was observed for Taxifolin. Therefore, this study suggests that Taxifolin, could be a potential inhibitor against SARS-CoV-2 main protease and can be further analysed by in vitro and in vivo experiments for management of the ongoing pandemic.


Assuntos
Citrus/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Descoberta de Drogas , Flavonoides/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Flavonoides/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteases/metabolismo , Conformação Proteica , Quercetina/análogos & derivados , Quercetina/metabolismo , Quercetina/farmacologia , SARS-CoV-2/efeitos dos fármacos
18.
Biochimie ; 175: 106-119, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32473183

RESUMO

After two decades of its discovery, numerous facts of adiponectin (APN) biology has been uncovered, yet, APN remains an elusive adipokine. Findings from clinical studies and animal models established APN's ameliorative role in cardiovascular disease (CVD) and pulmonary disease (PD) but the same condition is prognostic for mortality in the same set of patients which cornered APN towards a dubious state. A repertoire of mechanisms associated with the positive association of APN in both lean/cachectic or obese CVD and PD patients from past publications are evaluated. Newer pharmacological agent may be explored to regulate elevated blood APN concentration in COPD or CHF patients whereas administration of recombinant APN as well as growth hormone may augment blood APN concentration in obese subjects associated with low blood and intracellular APN concentration. However, some APN directed therapy in clinical as well as in pre-clinical setup has pronounced some contentious effects. After reviewing the mechanisms of the contentious role of APN functioning in pathologic conditions of CVD and PD in both lean and obese conditions, the authors came to conclusion that APN directed therapy may be utilized with caution keeping in mind the different age group, sex and the different CVD as well as pulmonary diseases they are suffering from.


Assuntos
Adiponectina/sangue , Doenças Cardiovasculares , Obesidade , Doença Pulmonar Obstrutiva Crônica , Animais , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/terapia , Modelos Animais de Doenças , Humanos , Obesidade/sangue , Obesidade/terapia , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/terapia
19.
Comput Biol Chem ; 79: 83-90, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30743160

RESUMO

AIM: An integrated protocol of virtual screening involving molecular docking, pharmacophore probing, and simulations was established to identify small novel molecules targeting crucial residues involved in the variant apoE ε4 to mimic its behavior as apoE2 thereby eliminating the amyloid plaque accumulation and facilitating its clearance. MATERIALS AND METHODS: An excellent ligand-based and structure-based approach was made to identify common pharmacophoric features involving structure-based docking with respect to apoE ε4 leading to the development of apoE ε4 inhibitors possessing new scaffolds. An effort was made to design multiple-substituted triazine derivatives series bearing a novel scaffold. A structure-based pharmacophore mapping was developed to explore the binding sites of apoE ε4 which was taken into consideration. Subsequently, virtual screening, ADMET, DFT searches were at work to narrow down the proposed hits to be forwarded as a potential drug likes candidates. Further, the binding patterns of the best-proposed hits were studied and were forwarded for molecular dynamic simulations of 10 ns for its structural optimization. RESULTS: Selectivity profile for the most promising candidates was studied, revealing significantly C13 and C15 to be the most potent compounds. The proposed hits can be forwarded for further study against apoE ε4 involved in neurological disorder Alzheimer's.


Assuntos
Apolipoproteínas E/antagonistas & inibidores , Teoria da Densidade Funcional , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Apolipoproteínas E/genética , Relação Dose-Resposta a Droga , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química
20.
Drug Chem Toxicol ; 41(2): 147-154, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28523965

RESUMO

Gramine is a natural indole alkaloid that has been isolated from different raw plants occurring mainly in Avena sativa, etc. The study was aimed to investigate the possible in vitro antioxidant, in vitro mutagenic, in vitro antimutagenic, and in vivo genotoxic activity of gramine using ferric reducing ability of plasma (FRAP) assay, Metal chelating, Ames bacterial reverse mutation test, and the mouse bone marrow micronucleus assay as well as chromosomal aberration. Four concentrations of gramine viz. 250, 500, 1000, and 2000 µg/mL were evaluated for its antioxidant activity in FRAP Assay and Metal Chelating Test. Four concentrations of gramine (1250 µg/plate, 2500 µg/plate, 5000 µg/plate, and 10 000 µg/plate) were employed in Salmonella typhimurium strains to study the mutagenicity in the presence and absence of standard mutagens, 2-aminofluorene (2-AF), sodium azide (SA), and 2-nitrofluorene (2-NF). Three doses, i.e. 0.1, 0.2, and 0.3 × the LD50 of gramine (i.e. 50 mg/kg, 100 mg/kg, and 150 mg/kg) were administered orally to either sex of Swiss albino mice for 48 h to study the genotoxic activity in micronucleus assay as well as chromosomal aberration. Gramine showed potent antioxidant activity in both the assay. Gramine at the given dose lacks mutagenicity as well as found to possess antimutagenic efficacy. Interestingly, S9 enzymes increase the antimutagenic activity in a dose-dependent manner. There was no significant increase in the frequency of micronucleated polychromatic erythrocytes (MNPCEs), as well as no significant difference in the percentage of chromosomal aberrations was observed between the gramine groups and the negative groups but percentage of polychromatic erythrocytes (PCEs) is found to be higher in all the gramine groups. These results indicate significant antioxidant, non-mutagenic as well as non-genotoxic activity of gramine in vitro and in vivo in the given doses.


Assuntos
Alcaloides/farmacologia , Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Avena , Grão Comestível , Testes de Mutagenicidade , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/toxicidade , Animais , Antimutagênicos/química , Antimutagênicos/isolamento & purificação , Antimutagênicos/toxicidade , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/toxicidade , Avena/química , Avena/toxicidade , Relação Dose-Resposta a Droga , Grão Comestível/química , Grão Comestível/toxicidade , Feminino , Ferricianetos/química , Alcaloides Indólicos , Quelantes de Ferro/farmacologia , Masculino , Camundongos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Mutação , Oxirredução , Ratos Wistar , Medição de Risco , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...