Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553965

RESUMO

AIMS: Carbapenem-resistant Escherichia coli has been categorized as a pathogen of critical priority by the World Health Organization as it is highly infectious with high mortality and morbidity rates and widespread transmission potential. Carbapenem resistance is primarily mediated by carbapenemase-encoding genes and, additionally, through intrinsic factors. In India, over the years, carbapenemase-encoding genes have been reported from diverse clinically significant pathogens. The present study identifies E. coli of clinical origin that harbours blaOXA-144. METHODS AND RESULTS: The study isolate was obtained from a tertiary referral hospital in northeast India. Carbapenemase production was investigated through culture on chromogenic agar and Rapidec Carba NP test as per manufacturer's instructions. Susceptibility of the isolate was performed by the Kirby-Bauer disc diffusion method and agar dilution method following CLSI guidelines. PCR targeting carbapenemase-encoding genes was performed, followed by transformation and conjugation experiments. Whole-genome sequencing of the isolate was done through the Illumina sequencing platform and the data were analysed using the Centre for Genomic Epidemiology database. BJD_EC180 is 6 919 180 bp in length and consists of six rRNA operons, 111 tRNA, and 6849 predicted protein-coding sequences. BJD_EC180 belonged to ST2437 and harboured the carbapenemase-encoding gene blaOXA-144 with ISAba1 upstream, along with multiple antibiotic resistance genes conferring clinical resistance towards beta-lactams, aminoglycosides, amphenicols, sulphonamides, tetracyclines, trimethoprim, and rifampin. CONCLUSIONS: Carbapenem-resistant E. coli harbouring blaOXA-144 associated with insertion sequence pose a serious health threat as their mobilization into carbapenem non-susceptible strains that will contribute to the resistance burden and therefore, needs urgent monitoring.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Incidência , Ágar , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética
2.
J Med Microbiol ; 72(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112536

RESUMO

Introduction. Early detection of carbapenem-resistant Escherichia coli (CREco), categorized as a critical priority pathogen by the World Health Organization (WHO), is crucial in optimizing therapeutic options and to thwart outbreaks in clinical settings.Gap statement. The need of the hour is a diagnostic method that can detect carbapenem resistance conferred by intrinsic or acquired carbapenem resistance mechanisms or both.Aim. The study investigates the performance of a novel screening chromogenic method for detection of CREco.Methodology. Carbapenem-susceptible (n=23) and non-susceptible (n=90) E. coli were used to investigate the efficiency of the blue chromogenic test. All of the isolates were received from a tertiary referral hospital in Silchar, India and subjected to the blue chromogenic test and observed for colour change. A colour change from colourless to blue is interpreted as a positive result. The test results were further compared with available methods for detection of carbapenem resistance conferred by carbapenemase production or other carbapenem resistance mechanisms.Results. The blue chromogenic test generated 100 % (CI: 95.98-100 %) sensitive and 100 % (CI: 85.75-100 %) specific results for the detection of CREco with no false-positive or false-negative results. Within 3 h after incubation, the test detects all CREco with carbapenemase activity. Additionally, the blue chromogenic test also positively detected E. coli harbouring carbapenemase variants and with efflux and porin activity, compared to other phenotypic-based approaches.Conclusion. The study highlights a novel method that is highly sensitive and specific, inexpensive, rapid and user-friendly for the detection of CREco. With the surge and expansion of CREco, this sensitive, specific, user-friendly and inexpensive method can be used in laboratories with limited facilities for early detection of CREco, thereby improving infection control along with averting future outbreaks.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Escherichia coli , Escherichia coli/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias , beta-Lactamases/genética , Carbapenêmicos/farmacologia
3.
Ann Clin Microbiol Antimicrob ; 22(1): 79, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679795

RESUMO

BACKGROUND: Carbapenem-Resistant Enterobacterales (CRE) has been categorized as pathogens of critical priority by World Health organization (WHO) as they pose significant threat to global public health. Carbapenemase production considered as the principal resistance mechanism against carbapenems and with the recent surge and expansion of carbapenemases and its variants among clinically significant bacteria in India, the present study reports expansion blaOXA-78 and blaOXA-58 of in CRE of clinical origin. METHODS: Bacterial isolates were collected from a tertiary referral hospital and identified through VITEK® 2 Compact automated System (Biomerieux, France). Rapidec® Carba NP (Biomerieux, France) was used to investigate carbapenemase production followed by antibiotic susceptibility testing through Kirby-Bauer Disc Diffusion method and agar dilution method. Class D carbapenemase genes were targeted through PCR assay followed by investigation of horizontal transmission of blaOXA-58 and blaOXA-78. Whole genome sequencing was carried out using Illumina platform to investigate the genetic context of blaOXA-58 and blaOXA-78 genes and further characterization of the CRE isolates. RESULTS: The carbapenem-resistant Escherichia coli (BJD_EC456) and Serratia marcescens (BJD_SM81) received during the study from the tertiary referral hospital were isolated from sputum and blood samples respectively. PCR assay followed by whole genome sequencing revealed that the isolates co-harbor blaOXA-58 and blaOXA-78, a variant of blaOXA-51. Horizontal transfer of blaOXA-58 and blaOXA-78 genes were unsuccessful as these genes were located on the chromosome of the study isolates. Transposon Tn6080 was linked to blaOXA-78 in the upstream region while the insertion sequences ISAba26 and ISCfr1 were identified in the upstream and downstream region of blaOXA-58 gene respectively. In addition, both the isolates were co-harboring multiple antibiotic resistance genes conferring clinical resistance towards beta-lactams, aminoglycosides, fluroquinolones, sulphonamides, tetracyclines. BJD_EC180 belonged to ST2437 while BJD_SM81 was of an unknown sequence type. The nucleotide sequences of blaOXA-78 (OQ533021) and blaOXA-58 (OQ533022) have been deposited in GenBank. CONCLUSIONS: The study provides a local epidemiological information regarding carbapenem resistance aided by transposon and insertion sequences associated blaOXA-78 and blaOXA-58 genes associated and warrants continuous monitoring to prevent their further dissemination into carbapenem non-susceptible strains thereby contributing to carbapenem resistance burden which is currently a global concern.


Assuntos
Carbapenêmicos , Elementos de DNA Transponíveis , Humanos , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Índia , Aminoglicosídeos , Escherichia coli
4.
Indian J Med Microbiol ; 40(1): 57-60, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34774342

RESUMO

PURPOSE: The prsA and vraTSR regulatory systems play a unique role in methicillin resistance by modifying the peptidoglycan cell wall PBP2 and involving cell wall stress response in Staphylococcus aureus. This study was designed to observe the transcriptional response of prsA and vraTSR system under oxacillin stress in S.aureus. METHODS: In this study, three clinical isolates of Staphylococcus aureus and a laboratory strain were examined. All the isolates were tested for mecA gene by PCR assay and were also tested for prsA, vraT, vraS and vraR gene. The transcriptional responses of the prsA gene along with the vraTSR regulatory system in these isolates was observed under normal conditions and exposed to 2 â€‹µg/ml and 4 â€‹µg/ml of oxacillin stress by quantitative real-time PCR assay. RESULTS: The result of transcriptional analysis confirmed that under oxacillin stress, the expressions of vraS and vraT are increased with the increase in the concentration of oxacillin. However, prsA has shown no significant expression under oxacillin stress. CONCLUSION: Although prsA did not show any specific expressional pattern, the study highlights the role of vraS and vraT regulatory system in conferring a methicillin-resistant phenotype when exposed to subinhibitory concentrations of oxacillin, which could act as a potential target for the next-generation antimicrobials.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Proteínas de Ligação às Penicilinas/genética , Staphylococcus aureus/genética
5.
BMC Microbiol ; 21(1): 79, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750290

RESUMO

BACKGROUND: The issue of carbapenem resistance in E.coli is very concerning and it is speculated that cumulative effect of both primary resistance genes and secondary resistance genes that act as helper to the primary resistance genes are the reason behind their aggravation. Therefore, here we attempted to find the role of two secondary resistance genes (SRG) ccdB and repA2 in carbapenem resistance in E. coli (CRE). In this context influential genes belonging to secondary resistome that act as helper to the primary resistance genes like blaNDM and blaCTX-M in aggravating ß-lactam resistance were selected from an earlier reported in silico study. Transcriptional expression of the selected genes in clinical isolates of E.coli that were discretely harboring blaNDM-1, blaNDM-4, blaNDM-5, blaNDM-7 and blaCTX-M-15 with and without carbapenem and cephalosporin stress (2 µg/ml) was determined by real time PCR. Cured mutants sets that were lacking (i) primary resistance genes, (ii) secondary resistance genes and (iii) both primary and secondary resistance genes were prepared by SDS treatment. These sets were then subjected to antibiotic susceptibility testing by Kirby Bauer disc diffusion method. RESULTS: Out of the 21 genes reported in the in silico study, 2 genes viz. repA2 and ccdB were selected for transcriptional expression analysis. repA2, coding replication regulatory protein, was downregulated in response to carbapenems and cephalosporins. ccdB, coding for plasmid maintenance protein, was also downregulated in response to carbapenems except imipenem and cephalosporins. Following plasmid elimination assay increase in diameter of zone of inhibition under stress of both antibiotics was observed as compared to uncured control hinting at the reversion of antibiotic susceptibility by the-then resistant bacteria. CONCLUSION: SRGs repA2 and ccdB help sustenance of blaNDM and blaCTX-M under carbapenem and cephalosporin stress.


Assuntos
Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
6.
BMC Res Notes ; 14(1): 58, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568186

RESUMO

OBJECTIVE: This study was designed to discover the dissemination of virulence genes in Methicillin-resistant Staphylococcus aureus from clinical, community and environmental settings. RESULTS: This study includes 1165 isolates collected from hospital, community and environmental settings. Among them sixty three were confirmed as MRSA with varied SCCmec types viz; type I, type II, type III, type IV, type V, type VI, type VII, type VIII and type XII. The virulence gene such as sea (n = 54), seb (n = 21), eta (n = 27), etb (n = 2), cna (n = 24), ica (n = 2) and tst (n = 30) was also revealed from this study. The study underscores coexistence of resistance cassette and virulence genes among clinical and environment isolates which is first of its kind from this part of the world.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos , Humanos , Índia , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Virulência/genética , Fatores de Virulência/genética
7.
Curr Microbiol ; 78(2): 528-533, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388933

RESUMO

The psm-mec element and other regulatory factors such as sarA, agrA, and RNAIII are responsible for maintaining the genetic framework for enhanced virulence of MRSA. psm-mec is found predominantly in the staphylococcal cassette chromosome (SCCmec). sarA, agrA, and RNAIII control gene expression to facilitate adaptation in certain environment. Genome-wide approaches have shown that expression of virulence factors is frequently regulated at transcriptional, translational level, and mRNA degradation level. In this study, transcriptional responses of psm-mec gene in accordance with other regulatory factors sarA, agrA, and RNAIII were observed under normal conditions as well as when exposed to 2 µg/ml and 6 µg/ml of oxacillin stress. One-way t-test was carried out for analysing RQ values obtained through real-time PCR. This study showed downregulation of psm-mec gene and upregulation of other regulatory genes at lower concentration of oxacillin. However, this was reverse when exposed against higher concentration of oxacillin. It was observed from the study that the expression of virulence factors were dependent on each other under different concentration of oxacillin. Thus, this study highlights that psm-mec, sarA, agrA, and RNAIII gene are under direct control of antibiotic pressure in a concentration-dependent manner.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Oxacilina/farmacologia , Staphylococcus
8.
Indian J Med Microbiol ; 38(3 & 4): 397-400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154253

RESUMO

Purpose: Pseudomonas aeruginosa is an opportunistic pathogen with biofilm-forming ability, by the virtue of which they can evade the immune response and antimicrobial chemotherapy. Several methods have been designed for the detection of biofilms but require sophisticated instrumentation and expertise. The present study, therefore, used an improvised device, 'fluorescence foldscope' which is an origami-based fluorescence microscope as an easy and effective tool to detect biofilm formation. Methodology: Three representatives of P. aeruginosa of clinical origin were taken for the study along with two reference strains PA01 and ATCC27853. The strains were cultured in Luria Bertani (LB) broth with and without carbapenem (imipenem and meropenem) and cephalosporin (ceftazidime, cefotaxime and ceftriaxone) pressure, respectively. The cultures were diluted to 1:100 in LB; seeded with sterile glass slides at 90° angle and incubated for 5 consecutive days. The slides were observed with fluorescence foldscope. Results: Fluorescence emission was observed in two test isolates CD1 and CD2 at 48 and 72 h, respectively, whereas no fluorescence was observed in CD3. The fluorescence observed in the isolates was not affected by 2 µg/ml carbapenem pressure, while with 2 µg/ml ceftazidime stress, a change in fluorescence was observed in CD2 in comparison to the fluorescence observed under normal growth condition. Conclusion: Fluorescence foldscopy is an effective and reliable tool for the detection of biofilm formation in clinical isolates of P. aeruginosa under different laboratory conditions. Biofilm-forming P. aeruginosa worsens the medical condition and is difficult to eradicate. The present study came up with an effective and reliable tool for the detection of biofilm formation in clinical isolates of P. aeruginosa.


Assuntos
Biofilmes/crescimento & desenvolvimento , Microscopia de Fluorescência/instrumentação , Pseudomonas aeruginosa/fisiologia , Ágar , Corantes , Vermelho Congo , Meios de Cultura , Humanos
10.
BMC Infect Dis ; 20(1): 544, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711470

RESUMO

BACKGROUND: This study aimed to identify ten different 16S rRNA methyltransferase genes (rmtA, rmtB, rmtC, rmtD, armA, rmtF, npmA, rmtH, rmtE and rmtG) and their coexisting ESBL and carbapenemase with the emergence of three E.coli clones within a single study centre. METHODS: A total of 329 non-duplicate E.coli isolates were studied to detect the presence of 16S rRNA methyltransferases along with ß-lactamases (TEM, SHV, OXA, VEB, GES, PER,CTX-M types, NDM, OXA-48,VIM, IMP and KPC) using PCR assay. Horizontal transferability were validated by transformation and conjugation analysis. Plasmid incompatibility typing and MLST analysis was also performed. RESULTS: A total of 117 isolates were found to be resistant to at least one of the aminoglycoside antibiotics. It was observed that 77 (65.8%) were positive for 16S rRNA methyltransferases. Among them thirty nine isolates were found to harbour only blaCTX-M-15, whereas combination of genes were observed in three isolates (blaVEB+ blaCTX-M-15 in 2 isolates and blaPER + blaCTX-M-15 in 1 isolate). blaNDM and blaOXA-48 like genes were found in 23 and 9 isolates, respectively. All the resistance genes were conjugatively transferable, and incompatibility typing showed multiple 16S rRNA methyltransferase genes were originated from a single Inc. I1 group. MLST analysis detected 3 clones of E.coliST4410, ST1341 and ST3906. CONCLUSION: The present study identified emergence of three clones of E.coli, resistant to aminoglycoside -cephalosporin- carbapenem. This warrants immediate measures to trace their transmission dynamics in order to slow down their spread in clinical setting.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferases/genética , beta-Lactamases/genética , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Genes Bacterianos/genética , Humanos , Índia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus
11.
BMC Res Notes ; 13(1): 168, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32192538

RESUMO

OBJECTIVE: The present study was carried out to investigate the transcriptional response of marA (Multiple antibiotic resistance A gene), soxS (Superoxide S gene) and rob (Right-origin-binding gene) under carbapenem stress. RESULTS: 12 isolates were found over-expressing AcrAB-TolC efflux pump system and showed reduced expression of OmpF (Outer membrane porin) gene were selected for further study. Among them, over expression of marA and rob was observed in 7 isolates. Increasing pattern of expression of marA and rob against meropenem was observed. The clones of marA and rob showed reduced susceptibility towards carbapenems.


Assuntos
Carbapenêmicos/farmacologia , Infecção Hospitalar/microbiologia , Proteínas de Ligação a DNA/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/efeitos dos fármacos , Escherichia coli , Regulon/efeitos dos fármacos , Transativadores/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Humanos , Índia
12.
J Glob Antimicrob Resist ; 21: 369-374, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31726238

RESUMO

OBJECTIVE: The present study describes aminoglycoside modifying enzymes (AMEs) among clinical isolates with coexisting extended spectrum beta-lactamases. METHODOLOGY: A total of 227 non duplicate enterobacterial isolates were collected and identified from patients who were admitted to different wards or attended OPD of a tertiary referral hospital of North-East India. Isolates were initially screened for antimicrobial susceptibility testing followed by PCR based screening of aminoglycosides modifying enzymes and co-existing ESBLs and carbapenemases. Horizontal transferability, incompatibility typing and stability of plasmids were also analyzed. RESULTS: Diverse types of AMEs were observed namely; ant(3″)-I, ant(4')-Ia, aac(3)-IIc, ant(3')-I, aac(6')-Ib, ant(2″)-Ia and aac(6'). Majority of the AME positive isolates harboured blaTEM followed by blaCTX-M-15 and a combination of blaTEM and blaCTX-M-15 were also observed. Nine isolates were found to harbour carbapenemases genes. AME genes were found to be located within a self conjugative plasmid of Inc FIA, IncY, IncN, IncFIB and IncA/C incompatibility types. It was observed that most AME genes were stable over 50 days of serial passages whereas aph(3')-Via and aph(3')-IIb were completely lost within 50 days. CONCLUSION: This study underscores the co-existence of AMEs and ESBLs within enterobacteriaceae which emphasize a reassessment of combination therapy in the health settings.


Assuntos
Aminoglicosídeos , Enterobacteriaceae , Aminoglicosídeos/farmacologia , Enterobacteriaceae/genética , Humanos , Índia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
13.
J Microbiol Methods ; 166: 105733, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31629020

RESUMO

Staphylococcal Cassette Chromosome mec (SCCmec) element plays a key role in development of resistance by carrying different resistance factors. Therefore, routine and rapid diagnostic approach is considered advantageous for the easy detection of SCCmec elements. So, here we have described the use of three sets of multiplex PCR assay, which can be used to identify SCCmec type I to type XII, unlike other known protocols. MRSA isolates of both hospital and community settings had been utilized to confirm the sensitivity of the method. All the isolates were examined for SCCmec types using multiplex PCR assay followed by sequencing of amplified products. The results confirmed the detection of SCCmec type I, type II, type III, type IV, type V, type VI, type VII, type VIII and type XII, where SCCmec type II having ST1551 and type V with ST2416 were found to be associated with multidrug resistance and were highly prevalent in the study area. This method will be useful for epidemiological assessment as it will be easier to track the resistance among staphylococci for control of infections and its management.


Assuntos
Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções Estafilocócicas/microbiologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Cromossomos Bacterianos/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana/métodos
14.
Indian J Med Microbiol ; 37(3): 418-422, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32003343

RESUMO

The present study investigates the molecular basis of aph-mediated aminoglycoside resistance and their transmission dynamics in a tertiary care hospital of Northeast India. Two hundred forty one isolates (230 Escherichia coli and 11 Klebsiella pneumoniae) were collected and screened for aminoglycoside resistance genes. Various aph types were amplified using polymerase chain reaction (PCR) assay. Plasmid incompatibilty, horizontal transferability and ERIC-PCR based typing were carried out for all the positive isolates. Among them, 67 isolates showed the presence of aph gene. Aph (3")-IIIa and aph (3')-Via were predominant and horizontally transferable. All the plasmids were of incompatibility I1 group. Twenty-eight different haplotypes of E. coli were found harbouring aph gene types. This study was able to identify diverse aph types in a single centre and their corresponding phenotypic trait.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Índia , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Testes de Sensibilidade Microbiana
15.
Indian J Med Microbiol ; 37(4): 527-530, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32436875

RESUMO

Introduction: It was also known that the IncP-1 plasmids are ubiquitous in environmental bacteria and those reside in soil, sewage, marine sediments and in manure. The blaNDMis associated with resistance determinants along with various mobile elements such as plasmid, insertion sequences and transposons, which facilitates its horizontal dissemination. These plasmids, if tracked, can be a starting point for the control of infection due to multidrug-resistant pathogens. The aim of the study was to investigate that IncP-type plasmids carrying blaNDMis adapted in different hosts. Materials and Methods: Thirteen of the isolates were harbouring IncP-type plasmid and they all were Escherichia coli isolated from hospitalised patients of Silchar Medical College and Hospital, India. The isolates were checked for susceptibility test, and the stability was assessed by a serial passage. These isolates were further subjected to transcriptional analysis of NDM gene as well as plasmid copy number alteration. Results: The study isolates were highly stable, and the resistance gene (blaNDM) was retained within isolates till 55th subsequent serial passages. Plasmid copy number alteration was random in isolates when exposed to carbapenem antibiotics, whereas increasing trend in transcriptional expression was observed with the increase in imipenem concentration. Conclusion: This study was able to underscore the presence of IncP plasmid that was harbouring blaNDMand was maintained within diverse host. The finding also highlights the adaptation of the broad-host-range plasmid that responds in terms of transcriptional expression under antibiotic exposure.


Assuntos
Especificidade de Hospedeiro/genética , Plasmídeos/genética , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Índia , Testes de Sensibilidade Microbiana/métodos , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...