Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(51): 33284-33292, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425154

RESUMO

This paper reports the fabrication, testing and obtained performance of a plasmonic sensor employing a gold (Au) nanohole array chip coated with tungsten disulphide (WS2), which is then functionalized for the detection of protein-protein interactions. A key novelty is that the WS2 was deposited as a monoatomic layer using a wafer-scale synthesis method that successfully provided a film of both high quality and uniform thickness. The deposited WS2 film was transferred onto a Au nanohole array chip using a novel method and was subsequently functionalized with biotin. The final sensor was tested and it demonstrated efficient real-time and label-free plasmonic detection of biotin-streptavidin coupling. Specifically, compared to a standard (i.e. uncoated) Au nanohole-based sensor, our WS2-coated Au nanohole array boosted the spectral shift of the resonance wavelength by ∼190%, resulting in a 7.64-fold improvement of the limit of detection (LOD).

2.
Chem Commun (Camb) ; 58(69): 9573-9585, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35975603

RESUMO

The medical fraternity is currently burgeoned and stressed with a huge rush of patients who have inflammatory conditions, metabolite diseases, and cardiovascular diseases. In these circumstances, advanced sensing technologies could have a huge impact on the quality of life of patients. Given plasmonic resonance effects significantly improve the ability to rapidly and accurately detect biological markers, plasmonic technology is harnessed to develop a fast and accurate diagnosis that can provide timely intervention with the diseases and can also aid the recovery process by complementing the therapy stage. In this short review, we provide an overlook of how the field of plasmonic sensing has revolutionized the field of medical diagnostics. This article reviews the fundamentals and development of plasmonics. In addition, we highlight the sensitivity of various SPR and LSPR sensors. The chemistry for functionalizing plasmonic sensors is also discussed. This review also outlines some general suggestions for future directions that we feel might be useful to advance our understanding of the universe or speed up the development of plasmonic sensors in the future.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Humanos , Qualidade de Vida
3.
Adv Mater ; 33(15): e2006926, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33690921

RESUMO

The change of the phase of light under the evolution of a nanomaterial with time is a promising new research direction. A phenomenon directly related to the sudden phase change of light is the Goos-Hänchen (G-H) shift, which describes the lateral beam displacement of the reflected light from the interface of two media when the angles of incidence are close to the total internal reflection angle or Brewster angle. Here, an innovative design of lithography-free nanophotonic cavities to realize electrically tunable G-H shifts at the singular phase of light in the visible wavelengths is reported. Reversible electrical tuning of phase and G-H shifts is experimentally demonstrated using a microheater integrated optical cavity consisting of a dielectric film on an absorbing substrate through a Joule heating mechanism. In particular, an enhanced G-H shift of 110 times of the operating wavelength at the Brewster angle of the thin-film cavity is reported. More importantly, electrically tunable G-H shifts are demonstrated by exploiting the significant tunable phase change that occurs at the Brewster angles, due to the small temperature-induced refractive index changes of the dielectric film. Realizing efficient electrically tunable G-H shifts with miniaturized heaters will extend the research scope of the G-H shift phenomenon and its applications.

4.
Adv Theory Simul ; 3(11): 2000185, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33173847

RESUMO

The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand-analyte or antibody-antigen interactions taking place on the sensor surface. The coronavirus disease (COVID-19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID-19 SARS-CoV-2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism-based SPR sensor has an incremental sensitivity of 111.11 deg RIU-1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth.

5.
Adv Theory Simul ; 3(7): 2000074, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32838127

RESUMO

The COVID-19 virus has been recently identified as a new species of virus that can cause severe infections such as pneumonia. The sudden outbreak of this disease is being considered a pandemic. Given all this, it is essential to develop smart biosensors that can detect pathogens with minimum time delay. Surface plasmon resonance (SPR) biosensors make use of refractive index (RI) changes as the sensing parameter. In this work, based on actual data taken from previous experimental works done on plasmonic detection of viruses, a detailed simulation of the SPR scheme that can be used to detect the COVID-19 virus is performed and the results are extrapolated from earlier schemes to predict some outcomes of this SPR model. The results indicate that the conventional Kretschmann configuration can have a limit of detection (LOD) of 2E-05 in terms of RI change and an average sensitivity of 122.4 degRIU-1 at a wavelength of 780 nm.

6.
Nat Commun ; 11(1): 3729, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709904

RESUMO

Two-dimensional (2D) magnets with intrinsic ferromagnetic/antiferromagnetic (FM/AFM) ordering are highly desirable for future spintronic devices. However, the direct growth of their crystals is in its infancy. Here we report a chemical vapor deposition approach to controllably grow layered tetragonal and non-layered hexagonal FeTe nanoplates with their thicknesses down to 3.6 and 2.8 nm, respectively. Moreover, transport measurements reveal these obtained FeTe nanoflakes show a thickness-dependent magnetic transition. Antiferromagnetic tetragonal FeTe with the Néel temperature (TN) gradually decreases from 70 to 45 K as the thickness declines from 32 to 5 nm. And ferromagnetic hexagonal FeTe is accompanied by a drop of the Curie temperature (TC) from 220 K (30 nm) to 170 K (4 nm). Theoretical calculations indicate that the ferromagnetic order in hexagonal FeTe is originated from its concomitant lattice distortion and Stoner instability. This study highlights its potential applications in future spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...