Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 18(5): 469-79, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26311077

RESUMO

PURPOSE: Dose-volume histogram (DVH) has become an important tool for evaluation of radiation outcome as reflected from many clinical protocols. While dosimetric accuracy in treatment planning system (TPS) is well quantified, the variability in volume estimation is uncertain due to reconstruction algorithm that is investigated in this study. In addition, the impact of dose distribution and tumor control probability (TCP) were also investigated with CT slice thickness for IMRT planning. MATERIALS AND METHODS: A water phantom containing various objects with accurately known volume ranging from 1 to 100 cm(3) was scanned with 1, 2, 3, 5, and 10 mm slice thickness. The CT data sets were sent to Eclipse TPS for contour delineation and volume estimation. The data were compared with known volume for the estimation of error in the volume of each structure. IMRT Plans were generated on phantom containing four objects with different slice thickness (1-5 mm) to calculate TCP. ICRU-83-recommended dose points such as D 2%, D 50%, D 98%, as well as homogeneity and conformity index were also calculated. RESULTS: The variability of volumes with CT slice thickness was significant especially for small volume structures. A maximum error of 92% was noticed for 1 cm(3) volume of object with 10 mm slice thickness, whereas it was ~19% for 1 mm slice thickness. For 2 and 3 cm(3) objects, the maximum error of 99% was noticed with 10 mm slice thickness and ~60% with 5 mm. The differences are smaller for larger volumes with a cutoff at about 20 cm(3). The calculated volume of the objects is a function of reconstruction algorithm and slice thickness. The PTV mean dose and TCP decreased with increasing slice thickness. Maximum variation of ~5% was noticed in mean dose and ~2% in TCP with change in slice thickness from 1 to 5 mm. The relative decrease in target volume receiving 95% of the prescribed dose is ~5% with change in slice thickness from 1 to 5 mm. The homogeneity index increases up to 163% and conformity index decreases by 4% between 1 and 5 mm slice thickness, producing highly inhomogeneous and least conformal treatment plan. CONCLUSIONS: Estimation of a volume is dependent on CT slice thickness and the contouring algorithm in a TPS. During commissioning of TPS and for all clinical protocols, evaluation of volume should be included to provide the limit of accuracy in DVH from TPS, especially for small objects. A smaller slice thickness provides superior dosimetry with improved TCP. Thus, the smallest possible slice thickness should be used for IMRT planning, especially when smaller structures are present.


Assuntos
Algoritmos , Neoplasias/patologia , Neoplasias/radioterapia , Órgãos em Risco , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Radiometria , Dosagem Radioterapêutica
2.
Clin Transl Oncol ; 15(9): 720-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23359183

RESUMO

BACKGROUND AND PURPOSE: External beam radiation therapy with concurrent chemotherapy (CRT) is widely used for the treatment of unresectable pancreatic cancer. Noncoplanar (NCP) 3D conformal radiotherapy (3DCRT) and coplanar (CP) IMRT have been reported to lower the radiation dose to organs at risk (OARs). The purpose of this article is to examine the utility of noncoplanar beam angles in IMRT for the management of pancreatic cancer. MATERIALS AND METHODS: Sixteen patients who were treated with CRT for unresectable adenocarcinoma of the pancreatic head or neck were re-planned using CP and NCP beams in 3DCRT and IMRT with the Varian Eclipse treatment planning system. RESULTS: Compared to CP IMRT, NCP IMRT had similar target coverage with slightly increased maximum point dose, 5,799 versus 5,775 cGy (p = 0.008). NCP IMRT resulted in lower mean kidney dose, 787 versus 1,210 cGy (p < 0.0001) and higher mean liver dose, 1,208 versus 1,061 cGy (p < 0.0001). Also, NCP IMRT resulted in similar mean stomach dose, 1,257 versus 1,248 cGy (p = 0.86) but slightly higher mean small bowel dose, 981 versus 866 cGy (p < 0.0001). CONCLUSIONS: The NCP IMRT was able to significantly decrease bilateral kidney dose, but did not improve other dose-volume criteria. The use of NCP beam angles is preferred only in patients with risk factors for treatment-related kidney dysfunction.


Assuntos
Adenocarcinoma/radioterapia , Neoplasias Pancreáticas/radioterapia , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Rim/efeitos da radiação , Órgãos em Risco , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA