Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38768575

RESUMO

Small field dosimetry presents unique challenges with source occlusion, lateral charged particle equilibrium and detector size. As detector volume decreases, signal strength declines while noise increases, deteriorating the signal-to-noise ratio (SNR). This issue may be compounded by triaxial cables connecting detectors to electrometers. However, effects of cables, critical for precision dosimetry, are often overlooked. There is a need to evaluate triaxial cable and detector impacts on SNR in small fields. To evaluate the influence of triaxial cables and microdetectors on signal-to-noise ratios in small-field dosimetry. This study also aims to establish the importance of cable quality assurance for measurement accuracy.Six 9.1 m length triaxial cables from different manufacturers were tested with six microdetectors . A 6 MV photon beam (TrueBeam) was used, with a water phantom at 5 cm depth with 0.5×0.5 cm2 to 10×10 cm2 fields at 600 MU/min. Readings were acquired using cable-detector permutations with a dedicated electrometer. Cables had differing connector types, conductor materials, insulation, and diameter. Detectors had various sensitive volumes, materials, typical signals, and bias voltages. Normalized FOFs showed 13.4% and 4.6% variation across cables for 0.5×0.5 cm2 and 1×1 cm2 fields, respectively. The maximum estimated error between any cable-detector combinations was 0.2%. No consistent FOF trend was observed with increasing cable diameter, likely due to different types of detectors used. However, absolute FOF differences of 0.9% and 0.3% were noted between cables for 0.5×0.5 cm2 and 1×1 cm2 fields, respectively. Regular triaxial cable quality assurance is critical for precision small field dosimetry. A national protocol is needed to standardize cable evaluations/calibrations, particularly for small signals from modern detectors. This could enhance measurement accuracy and treatment delivery with advanced small-field radiotherapy techniques that promise improved patient outcomes. Further studies should expand detector and cable models tested across institutions to establish robust quality control guidelines.

2.
Br J Radiol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552328

RESUMO

Small-field dosimetry used in special procedures such as gamma knife, Cyberknife, Tomotherapy, IMRT and VMAT has been in evolution after several radiation incidences with very significant (70%) errors due to poor understanding of the dosimetry. IAEA-TRS-483 and AAPM-TG-155 have provided comprehensive information on small-fields dosimetry in terms of code of practice and relative dosimetry. Data for various detectors and conditions have been elaborated. It turns out that with a suitable detectors dose measurement accuracy can be reasonably (±3%) achieved for 6 MV beams for fields > 1x1 cm2. For grid therapy, even though the treatment is performed with small fields created by either customized blocks, multileaf collimator (MLC) or specialized devices, it is multiple small fields that creates combined treatment. Hence understanding the dosimetry in collection of holes of small field is a separate challenge that needs to be addressed. It is more critical to understand the scattering conditions from multiple holes that form the treatment grid fields. Scattering changes the beam energy (softer) and hence dosimetry protocol needs to be properly examined for having suitable dosimetric parameters. In lieu of beam parameter unavailability in physical grid devices, MLC based forward and inverse planning is an alternative path for bulky tumors. Selection of detectors in small field measurement is critical and it is more critical in mixed beams created by scattering condition. Ramification of small field concept used in grid therapy along with major consideration of scattering condition is explored. Even though this review article is focused mainly for dosimetry for low energy megavoltage photon beam (6 MV) but similar procedures could be adopted for high energy beams. To eliminate small field issues, lattice therapy with the help of MLC is a preferrable choice.

3.
Clin Transl Radiat Oncol ; 46: 100747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38450218

RESUMO

Background and purpose: The ability to determine the risk and predictors of lymphedema is vital in improving the quality of life for head and neck (HN) cancer patients. However, selecting robust features is challenging due to the multicollinearity and high dimensionality of radiotherapy (RT) data. This study aims to overcome these challenges using an ensemble feature selection technique with machine learning (ML). Materials and methods: Thirty organs-at-risk, including bilateral cervical lymph node levels, were contoured, and dose-volume data were extracted from 76 HN treatment plans. Clinicopathologic data was collected. Ensemble feature selection was used to reduce the number of features. Using the reduced features as input to ML and competing risk models, internal and external lymphedema prediction capability was evaluated with the ML models, and time to lymphedema event and risk stratification were estimated using the risk models. Results: Two ML models, XGBoost and random forest, exhibited robust prediction performance. They achieved average F1-scores and AUCs of 84 ± 3.3 % and 79 ± 11.9 % (external lymphedema), and 64 ± 12 % and 78 ± 7.9 % (internal lymphedema). Predictive ML and risk models identified common predictors, including bulky node involvement, high dose to various lymph node levels, and lymph nodes removed during surgery. At 180 days, removing 0-25, 26-50, and > 50 lymph nodes increased external lymphedema risk to 72.1 %, 95.6 %, and 57.7 % respectively (p = 0.01). Conclusion: Our approach, involving the reduction of HN RT data dimensionality, resulted in effective ML models for HN lymphedema prediction. Predictive dosimetric features emerged from both predictive and competing risk models. Consistency with clinicopathologic features from other studies supports our methodology.

4.
Biomed Phys Eng Express ; 10(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38306972

RESUMO

Objectives.In an addendum to AAPM TG-51 protocol, McEwenet al, (DOI:10.1118/1.4866223) introduced a new factorPrpto account for the radial dose distribution of the photon beam over the detector volume mainly in flattening filter free (FFF) beams.Prpand its extension to non-FFF beam reference dosimetry is investigated to see its impact in a clinical situation.Approches.ThePrpwas measured using simplified version of Sudhyadhomet al(DOI:10.1118/1.4941691) for Elekta and Varian FFF beams with two commonly used calibration detectors; PTW-30013 and Exradin-A12 ion chambers after acquiring high resolution profiles in detectors cardinal coordinates. For radial dose correction factor, the ion chambers were placed in a small water phantom and the central axis position was set to center of the sensitive volume on the treatment table and was studied by rotating the table by 15-degree interval from -90 to +90 degrees with respect to the initial (zero) position.Main results.The magnitude ofPrpvaries very little with machine, detector and beam energies to a value of 1.003 ± 0.0005 and 1.005 ± 0.0005 for 6FFF and 10FFF, respectively. The radial anisotropy for the Elekta machine with Exradin-A12 and PTW-30013 detector the magnitudes are in the range of (0.9995±0.0011 to 1.0015±0.0010) and (0.9998±0.0007 to 1.0015±0.0010), respectively. Similarly, for the Varian machine with Exradin-A12 and PTW-30013 ion chambers, the magnitudes are in the range of (1.0004±0.0010 to 1.0018±0.0018) and (1.0006±0.0009 to 1.0027±0.0007), respectively.Significance.ThePrpis ≤ 0.3% and 0.5% for 6FFF and 10FFF, respectively. The radial dose correction factor in regular beams also does not impact the dosimetry where the maximum magnitude is ±0.2% which is within experimental uncertainty.


Assuntos
Fótons , Radiometria , Fótons/uso terapêutico , Radiometria/métodos , Imagens de Fantasmas , Calibragem , Incerteza , Carmustina
5.
J Appl Clin Med Phys ; : e14265, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335230

RESUMO

BACKGROUND: Electron out-of-field scatter is generally not given importance mainly in electron fields. However, this is important when applicator down and boost treatments are given usually at an angle from the central axis. The electron scatter dose is found to be far away from the central axis which could be easily ignored. PURPOSE: This study aims to investigate the out-of-field radiation doses from electron applicators and their effects on clinical treatment. By identifying the parameters that contribute to out-of-field doses and to explore potential strategies for reducing these doses in order to improve patient outcomes from modern machines. METHODS: Measurements were performed in water phantom using electron diode for modern Elekta and Varian machines. Dose profiles were acquired at surface and dmax with 0° and 90° collimation angle. Various gantry angles were also studied for some data with IC Profiler. The profiles were normalized with respect to the central axis dose. RESULTS: The scatter dose peaks were found at a distance between 11 and 28 cm from the central axis on all machines. However, the peak shifts to 15 cm at 90° collimator when beam is tilted. The position and intensity of the dose varies with depth, collimator, and gantry angles for both Elekta and Varian machines. Due to clearance issues more gantry angles were studied for Elekta applicator compared to Varian. In general, Varian TrueBeam has a lower scatter that Elekta Infinity. The 90° collimator angle has a higher scatter compared to zero degree for both machines. CONCLUSIONS: There are clinically significant peripheral doses around 3% of the central axis dose from the electron applicator. Elekta has a slightly higher scatter (3%) than Varian (2%) that peaks at 25 cm which is clinically important but often overlooked.

6.
Med Phys ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346088

RESUMO

BACKGROUND: Surface dose in megavoltage photon radiotherapy has a significant clinical impact on the skin-sparing effect. In previously published works, it was established that the presence of medium atomic number (Z) absorbers, such as tin, decreases the surface dose. It was concluded that high-Z absorbers, such as lead, increase the surface dose, relative to medium-Z absorbers, due to the increased contributions from photoelectrons and electron-positron pairs. PURPOSE: The purpose of this investigation is to revisit these conclusions in the context of photon beams from modern linacs. METHODS: A metric estimating the relative intensity of charged particles emitted in the forward direction, I f ${I}_f$ , was proposed using cross-sections for the photon interactions. The I f ${I}_f$ values were calculated for various absorbers using energy spectra of 6 and 10 MV photon beams from a Varian TrueBeam linac. Monte Carlo (MC) simulations were performed using TOPAS MC code to calculate the surface dose for various absorbers. Surface dose measurements were performed with 6 and 10 MV photon beams with tin and lead absorbers. RESULTS: The I f ${I}_f$ values were found to decrease as a function of Z for both 6 and 10 MV photon beams indicating that the surface dose from electrons emitted in the forward direction consistently decreases with increasing Z. With the increasing Z of the absorbers, both experimental and MC-calculated surface dose decreased without exhibiting a minimum at medium-Z absorbers. The surface dose for lead and tin was determined to be within 1% of each other for both 6 and 10 MV photon beams using MC simulations and experimental measurements. Therefore, no statistically significant difference in surface dose was found between the tin and lead absorbers disproving the presence of any minima in the surface dose versus the Z curve as has been reported in the literature. CONCLUSIONS: Surface dose for modern photon beams can be reduced using both medium and high Z absorbers since a consistent decrease in surface dose was found with increasing absorber Z.

7.
Sci Rep ; 14(1): 4510, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402259

RESUMO

Grid therapy recently has been picking momentum due to favorable outcomes in bulky tumors. This is being termed as Spatially Fractionated Radiation Therapy (SFRT) and lattice therapy. SFRT can be performed with specially designed blocks made with brass or cerrobend with repeated holes or using multi-leaf collimators where dosimetry is uncertain. The dosimetric challenge in grid therapy is the mystery behind the lower percentage depth dose (PDD) in grid fields. The knowledge about the beam quality, indexed by TPR20/10 (Tissue Phantom Ratio), is also necessary for absolute dosimetry of grid fields. Since the grid may change the quality of the primary photons, a new [Formula: see text] should be evaluated for absolute dosimetry of grid fields. A Monte Carlo (MC) approach is provided to resolving the dosimetric issues. Using 6 MV beam from a linear accelerator, MC simulation was performed using MCNPX code. Additionally, a commercial grid therapy device was used to simulate the grid fields. Beam parameters were validated with MC model for output factor, depth of maximum dose, PDDs, dose profiles, and TPR20/10. The electron and photon spectra were also compared between open and grid fields. The dmax is the same for open and grid fields. The PDD with grid is lower (~ 10%) than the open field. The difference in TPR20/10 of open and grid fields is observable (~ 5%). Accordingly, TPR20/10 is still a good index for the beam quality in grid fields and consequently choose the correct [Formula: see text] in measurements. The output factors for grid fields are 0.2 lower compared to open fields. The lower depth dose with grid therapy is due to lower depth fluence with scatter radiation but it does not impact the dosimetry as the calibration parameters are insensitive to the effective beam energies. Thus, standard dosimetry in open beam based on international protocol could be used.


Assuntos
Fótons , Radiometria , Radiometria/métodos , Fótons/uso terapêutico , Elétrons , Imagens de Fantasmas , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
8.
J Magn Reson Imaging ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265188

RESUMO

Ever since its introduction as a diagnostic imaging tool the potential of magnetic resonance imaging (MRI) in radiation therapy (RT) treatment simulation and planning has been recognized. Recent technical advances have addressed many of the impediments to use of this technology and as a result have resulted in rapid and growing adoption of MRI in RT. The purpose of this article is to provide a broad review of the multiple uses of MR in the RT treatment simulation and planning process, identify several of the most used clinical scenarios in which MR is integral to the simulation and planning process, highlight existing limitations and provide multiple unmet needs thereby highlighting opportunities for the diagnostic MR imaging community to contribute and collaborate with our oncology colleagues. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 5.

9.
J Appl Clin Med Phys ; 25(1): e14209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983685

RESUMO

BACKGROUND: Plastic scintillating detectors (PSD) have gained popularity due to small size and are ideally suited in small-field dosimetry due to no correction needed and hence detector reading can be compared to dose. Likewise, these detectors are active and water equivalent. A new PSD from Blue Physics is characterized in photon beam. PURPOSE: Innovation in small-field dosimetry detector has led us to examine Blue Physics PSD (BP-PSD) for use in photon beams from linear accelerator. METHODS: BP-PSD was acquired and its characteristics were evaluated in photon beams from a Varian TrueBeam. Data were collected in a 3D water tank. Standard parameters; dose, dose rate, energy, angular dependence and temperature dependence were studied. Depth dose, profiles and output in a reference condition as well as small fields were measured. RESULTS: BP-PSD is versatile and provides data very similar to an ion chamber when Cerenkov radiation is properly accounted. This device measures data pulse by pulse which very few detectors can perform. The differences between ion chamber data and PSD are < 2% in most cases. The angular dependence is a bit pronounces to 1.5% which is due to PSD housing. Depth dose and profiles are comparable within < 1% to an ion chamber. For small fields this detector provides suitable field output factor compared to other detectors and Monte Carlo (MC) simulated data without any added correction factor. CONCLUSIONS: The characteristics of Blue Physics PSD is uniquely suitable in photon beam and more so in small fields. The data are reproducible compared to ion chamber for most parameters and ideally suitable for small-field dosimetry without any correction factor.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Humanos , Fótons , Método de Monte Carlo , Água
10.
Phys Med ; 112: 102649, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37544030

RESUMO

PURPOSE: To evaluate modern dose calculation algorithms with high-Z prosthetic devices used in radiation treatment. METHODS: A bilateral hip prosthetic patient was selected to see the effect of modern algorithms from the commercial system for plan comparisons. The CT data with dose constraints were sent to various institutions for dose calculations. The dosimetric parameters, D98%, D90%, D50% and D2% were compared. A water phantom with an actual prosthetic device was used to measure the dose using a parallel plate ionization chamber. RESULTS: Dosimetric variability in PTV coverage was significant (>10%) among various treatment planning algorithms. The comparison of PTV dosimetric parameters, D98%, D90%, D50% and D2% as well as organs at risk (OAR) have large discrepancies compared to our previous publication with older algorithms (https://doi.org/10.1016/j.ejmp.2022.02.007) but provides realistic dose distribution with better homogeneity index (HI). Backscatter and forward scatter attenuation of the prosthesis was measured showing differences <15.7% at the interface among various algorithms. CONCLUSIONS: Modern algorithms dose distributions have improved greatly compared to older generation algorithms. However, there is still significant differences at high-Z-tissue interfaces compared to the measurements. To ensure accuracy, it's important to take precautions avoiding placing any prosthesis in the beam direction and using type C algorithms.

11.
Phys Imaging Radiat Oncol ; 27: 100462, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449023

RESUMO

Purpose: Periodic imaging quality assurance (QA) of magnetic resonance imaging linear accelerator (MRL) is critical. The feasibility of a new MRL imaging phantom used for QA in the low field was evaluated with automated image analysis of various parameters for accuracy and reproducibility. Methods and materials: The new MRL imaging phantom was scanned across every 30 degrees of the gantry, having the on/off state of the linac in a low-field MRL system using three magnetic resonance imaging sequences: true fast imaging with steady-state precession (TrueFISP), T1 weighted (T1W), and T2 weighted (T2W). The DICOM files were used to calculate the imaging parameters: geometric distortion, uniformity, resolution, signal-to-noise ratio (SNR), and laser alignment. The point spread function (PSF) and edge spread function (ESF) were also calculated for resolution analysis. Results: The phantom data showed a small standard deviation - and high consistency for each imaging parameter. The highest variability in data was observed with the true fast imaging sequence at the calibration angle, which was expected because of low resolution and short scan time (25 sec). The mean magnitude of the largest distortion measured within 200 mm diameter with TrueFISP was 0.31 ± 0.05 mm. The PSF, ESF, signal uniformity, and SNR measurements remained consistent. Laser alignment traditional offsets and angular deviation remained consistent. Conclusions: The new MRL imaging phantom is reliable, reproducible, time effective, and easy to use for a 0.35 T MRL system. The results promise a more streamlined, time-saving, and error-free QA process for low-field MRL adapted in our clinical setting.

12.
J Clin Med ; 12(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36769553

RESUMO

Dose-calculation algorithms are critical for radiation treatment outcomes that vary among treatment planning systems (TPS). Modern algorithms use sophisticated radiation transport calculation with detailed three-dimensional beam modeling to provide accurate doses, especially in heterogeneous medium and small fields used in IMRT/SBRT. While the dosimetric accuracy in heterogeneous mediums (lung) is qualitatively known, the accuracy is unknown. The aim of this work is to analyze the calculated dose in lung patients and compare the validity of dose-calculation algorithms by measurements in a low-Z phantom for two main classes of algorithms: type A (pencil beam) and type B (collapse cone). The CT scans with volumes (target and organs at risk, OARs) of a lung patient and a phantom build to replicate the human lung data were sent to nine institutions for planning. Doses at different depths and field sizes were measured in the phantom with and without inhomogeneity correction across multiple institutions to understand the impact of clinically used dose algorithms. Wide dosimetric variations were observed in target and OAR coverage in patient plans. The correction factor for collapsed cone algorithms was less than pencil beam algorithms in the small fields used in SBRT. The pencil beam showed ≈70% variations between measured and calculated correction factors for various field sizes and depths. For large field sizes the trends of both types of algorithms were similar. The differences in measured versus calculated dose for type-B algorithms were within ±10%. Significant variations in the target and OARs were observed among various TPS. The results suggest that the pencil beam algorithm does not provide an accurate dose and should not be considered with small fields (IMRT/SBRT). Type-B collapsed-cone algorithms provide better agreement with measurements, but still vary among various systems.

13.
Med Phys ; 50(6): 3833-3841, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36734482

RESUMO

BACKGROUND: There is a major conceptual difference between small-field and large field dosimetry that is, different definition of the field size. The dosimetry protocol IAEA TRS-483 recommends the use of the field size defined by measured dose profiles (full-width half maximum, FWHM) that is significantly different from conventional field size definition by the geometric field opening of MLC/Jaw at the isocenter. The application of the effective field size concept, Sclin , was introduced by Cranmer-Sargison et al. (DOI:10.1016/j.radonc.2013.10.002) as a reporting mechanism for field output factors of rectangular fields. The study by Das et al. (DOI:10.1002/mp.15624) indicated the limitations of obtaining the field size by experimentally measuring FWHM, for example, the measured FWHM is smaller than beam geometric size, which is contradictory to what is expected as a result of partial occlusion of the primary photon source by the collimating devices. Cranmer-Sargison et al. and Das et al suggested that additional investigations are needed to evaluate its limitations. PURPOSE: This study investigates the validity of the field size definition by FWHM and by MLC/Jaw opening and finds the pros and cons between these two methods to resolve the controversial issue. METHODS: The FWHM can be obtained by measuring or calculating dose profiles. Using Monte Carlo simulations this study compares the field size obtained by FWHM and by field geometric field opening. The EGSnrc system is used to simulate 6 MV beam to generate square and rectangular fields from 5-30 mm with every possible permutation (keeping one jaw fixed and varying other jaw from 5 to 30 mm). The calculated FWHM and output factors are compared with measurements obtained by a microSilicon detector. RESULTS: The results show that field width (FWHM) derived from MC calculations generally agrees with machine geometric field width within 0.5 mm for square or rectangular fields with a minimum field width of ≥8 mm. For the extremely small fields with a minimum field width of 5 mm the discrepancies are up to 1.6 mm. The field width (FWHM) obtained by measuring dose profiles are unreliable for small fields due to the measurement uncertainties for an extremely small field. The effect of partial occlusion of the primary photon source by the jaws on the beam axis is clearly observed in the calculated dose profiles. For the extremely small field width of 5 mm, Monte Carlo predicted up to 10% exchange factor differences which are confirmed by the measurements. CONCLUSION: The field size defined by the geometric opening of the beam-defining system, is still valid for small fields. The field size defined by geometric opening is independent of measurement uncertainties, independent of machine design, and highly reproducible. It is feasible to accurately tabulate the output factors as a function of geometric field opening thus eliminating user and detector choice for FWHM measurements. The field output factor of a small rectangular field cannot be related to an equivalent field size without considering the exchange factor due to partial occlusion of the photon source.


Assuntos
Fótons , Radiometria , Método de Monte Carlo , Incerteza , Aceleradores de Partículas
14.
Radiother Oncol ; 182: 109571, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822361

RESUMO

BACKGROUND AND PURPOSE: Radiation dose prescriptions are foundational for optimizing treatment efficacy and limiting treatment-related toxicity. We sought to assess the lack of standardization of SBRT dose prescriptions across institutions. MATERIALS & METHODS: Dosimetric data from 1298 patients from 9 academic institutions treated with IMRT and VMAT were collected. Dose parameters D100, D98, D95, D50, and D2 were used to assess dosimetric variability. RESULTS: Disease sites included lung (48.3 %) followed by liver (29.7 %), prostate (7.5 %), spine (6.8 %), brain (4.1 %), and pancreas (2.5 %). The PTV volume in lung varied widely with bimodality into two main groups (22.0-28.7 cm3) and (48.0-67.1 cm3). A hot spot ranging from 120-150 % was noted in nearly half of the patients, with significant variation across institutions. A D50 ≥ 110 % was found in nearly half of the institutions. There was significant dosimetric variation across institutions. CONCLUSIONS: The SBRT prescriptions in the literature or in treatment guidelines currently lack nuance and hence there is significant variation in dose prescriptions across academic institutions. These findings add greater importance to the identification of dose parameters associated with improved clinical outcome comparisons as we move towards more hypofractionated treatments. There is a need for standardized reporting to help institutions in adapting treatment protocols based on the outcome of clinical trials. Dosimetric parameters are subsequently needed for uniformity and thereby standardizing planning guidelines to maximize efficacy, mitigate toxicity, and reduce treatment disparities are urgently needed.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Masculino , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Prescrições
15.
J Clin Med ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36498563

RESUMO

A novel clinical workflow utilizing a direction modulated brachytherapy (DMBT) tandem applicator in combination with a patient-specific, 3D printed vaginal needle-track template for an advanced image-guided adaptive interstitial brachytherapy of the cervix. The proposed workflow has three main steps: (1) pre-treatment MRI, (2) an initial optimization of the needle positions based on the DMBT tandem positioning and patient anatomy, and a subsequent inverse optimization using the combined DMBT tandem and needles, and (3) rapid 3D printing. We retrospectively re-planned five patient cases for two scenarios; one plan with the DMBT tandem (T) and ovoids (O) with the original needle (ND) positions (DMBT + O + ND) and another with the DMBT T&O and spatially reoptimized needles (OptN) positions (DMBT + O + OptN). All retrospectively reoptimized plans have been compared to the original plan (OP) as well. The accuracy of 3D printing was verified through the image registration between the planning CT and the CT of the 3D-printed template. The average difference in D2cc for the bladder, rectum, and sigmoid between the OPs and DMBT + O + OptNs were -8.03 ± 4.04%, -18.67 ± 5.07%, and -26.53 ± 4.85%, respectively. In addition, these average differences between the DMBT + O + ND and DMBT + O + OptNs were -2.55 ± 1.87%, -10.70 ± 3.45%, and -22.03 ± 6.01%, respectively. The benefits could be significant for the patients in terms of target coverage and normal tissue sparing and increase the optimality over free-hand needle positioning.

16.
Phys Med Biol ; 67(23)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36395519

RESUMO

Objective.To present and quantify the variability in the acceptance testing data for the imaging component of the 0.35 T magnetic resonance-linear accelerator (MR-linac).Approach.The current acceptance testing protocol by the MR-linac vendor was described along with the equipment and scanner parameters utilized throughout the process. TheBofield homogeneity, SNR/uniformity of the combined and individual receiver coils, American College of Radiology (ACR) image quality testing, and spatial integrity of the imaging data were collected from twelve different institutions. The variability in the results was accentuated and the ramifications of the results were discussed in the context of MR-guided radiation therapy.Main Results.TheBofield homogeneity was found to have a large gantry dependence with the median values being <4 ppm for all gantry angles. The SNR and uniformity were found to be well above the vendor-specified thresholds with a relatively small institutional-dependence. All institutions passed the ACR image uniformity tests. The largest institutional variability was noted to be for the slice positional accuracy test. The spatial fidelity was calculated to be <1.0 and <2.1 mm within a 100 and a 175 mm radius from the isocenter.Significance.The results from this study can be used to set the tolerances and formal guidelines for MR-linacs imaging quality assurance. Additionally, the multi-institutional data reported in this work will aid in future MR-linac acceptance and commissioning.


Assuntos
Imageamento por Ressonância Magnética , Aceleradores de Partículas , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos
17.
J Clin Med ; 11(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079065

RESUMO

The special issue of JCM on "Advances of MRI in Radiation Oncology" provides a unique forum for scientific literature related to MR imaging in radiation oncology. This issue covered many aspects, such as MR technology, motion management, economics, soft-tissue-air interface issues, and disease sites such as the pancreas, spine, sarcoma, prostate, head and neck, and rectum from both camps-the Unity and MRIdian systems. This paper provides additional information on the success and challenges of the two systems. A challenging aspect of this technology is low throughput and the monumental task of education and training that hinders its use for the majority of therapy centers. Additionally, the cost of this technology is too high for most institutions, and hence widespread use is still limited. This article highlights some of the difficulties and how to resolve them.

18.
J Clin Med ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887808

RESUMO

Advances in image-guided radiotherapy have brought about improved oncologic outcomes and reduced toxicity. The next generation of image guidance in the form of magnetic resonance imaging (MRI) will improve visualization of tumors and make radiation treatment adaptation possible. In this review, we discuss the role that MRI plays in radiotherapy, with a focus on the integration of MRI with the linear accelerator. The MR linear accelerator (MR-Linac) will provide real-time imaging, help assess motion management, and provide online adaptive therapy. Potential advantages and the current state of these MR-Linacs are highlighted, with a discussion of six different clinical scenarios, leading into a discussion on the future role of these machines in clinical workflows.

19.
Med Phys ; 49(6): 4043-4055, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35344220

RESUMO

PURPOSE: The equivalent square (ES) concept has been used for traditional radiation fields defined by the machine collimating system. For small fields, the concept Sclin was introduced based on measuring dosimetric field width (full-width half maximum, FWHM) of the cardinal axis of the beam profiles. The pros and cons of this concept are evaluated in small fields and compared with the traditional ES using area and perimeter (4A/P) method based on geometric field size settings, for example, light field settings. METHODS: One hundred thirty-seven square and rectangular fields from 5-50 mm with every possible permutation (keeping one jaw fixed and varying other jaw from 5 to 50 mm) were utilized to measure FWHM for the validation of Sclin . Using a microSilicon detector and a scanning water tank, measurements were performed on an Elekta (Versa) machine with Agility head and a Varian TrueBeam with different MLC/Jaw design to evaluate the Sclin concept and to understand the effect of exchange factor in small fields. Field output factors were also measured for all 137 fields. RESULTS: The data fitting for fields ranging from 5-50 mm between the traditional 4A/P method and Sclin shows differences and indicates a linear relationship with distinct separation of slope for Elekta and Varian machines. For Elekta Agility machine ES based on 4A/P < Sclin and for the VarianTrueBeam  4A/P > Sclin for square fields. Our measured data show that both methods are equally valid but does vary by the machine design. The field output factor is dependent on the elongation factor as well as machine design. For fields with sides ≥10 mm, the exchange factor is nearly identical in both machines with magnitude up to 4%, which is close to measurement uncertainty (±3%), but for small fields (< 10 mm), the Elekta machine has higher exchange factors compared to the Varian machine. CONCLUSION: The results demonstrate that the two concepts for defining equivalent field (Sclin and 4A/P) are equivalent and can be directly related through an empirical equation. This study confirms that 4A/P is still valid for small fields except for very small fields (≤10 mm) where source occlusion is a dominating factor. The Sclin method is potentially sensitive to measurement uncertainty due to measurement of FWHM which is machine-, detector- and user-dependent, while the 4A/P method relies mainly on geometry of the machine and has less dependency on type of machine, detector, and user. The exchange factors are comparable for both types of machines. The conclusion is based on data from an Elekta with Agility head and a Varian TrueBeam machine that may have potential for bias due to light field/collimator set up and alignment. Care should be taken in extrapolating these data to any other machine.


Assuntos
Aceleradores de Partículas , Radiometria , Radiometria/métodos , Incerteza
20.
Pract Radiat Oncol ; 12(4): e253-e268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283342

RESUMO

PURPOSE: This updated report on stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) is part of a series of consensus-based white papers previously published addressing patient safety. Since the first white papers were published, SRS and SBRT technology and procedures have progressed significantly such that these procedures are now more commonly used. The complexity and submillimeter accuracy, and delivery of a higher dose per fraction requires an emphasis on best practices for technical, dosimetric, and quality assurance. Therefore, quality and patient safety considerations for these techniques remain an important area of focus. METHOD: The American Society for Radiation Oncology convened a task force to assess the original SRS/SBRT white paper and update content where appropriate. Recommendations were created using a consensus-building methodology and task force members indicated their level of agreement based on a 5-point Likert scale, from "strongly agree" to "strongly disagree." A prespecified threshold of ≥75% of raters who select "strongly agree" or "agree" indicated consensus. SUMMARY: This white paper builds on the previous version and uses of other guidance documents to broadly address SRS and SBRT delivery, primarily focusing on processes related to quality and safety. SRS and SBRT require a team-based approach, staffed by appropriately trained and credentialed specialists as well as significant personnel resources, specialized technology, and implementation time. A thorough feasibility analysis of resources is required to achieve the clinical and technical goals and thoroughly discussed with all personnel before undertaking new disease sites. A comprehensive quality assurance program must be developed, using established treatment guidelines, to ensure SRS and SBRT are performed in a safe and effective manner. Patient safety in SRS/SBRT is everyone's responsibility and professional organizations, regulators, vendors, and end-users must demonstrate a clear commitment to working together to ensure the highest levels of safety.


Assuntos
Radioterapia (Especialidade) , Radiocirurgia , Consenso , Humanos , Radiometria , Radiocirurgia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...