Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiol Artif Intell ; 4(3): e210115, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35652116

RESUMO

Purpose: To present a method that automatically detects, subtypes, and locates acute or subacute intracranial hemorrhage (ICH) on noncontrast CT (NCCT) head scans; generates detection confidence scores to identify high-confidence data subsets with higher accuracy; and improves radiology worklist prioritization. Such scores may enable clinicians to better use artificial intelligence (AI) tools. Materials and Methods: This retrospective study included 46 057 studies from seven "internal" centers for development (training, architecture selection, hyperparameter tuning, and operating-point calibration; n = 25 946) and evaluation (n = 2947) and three "external" centers for calibration (n = 400) and evaluation (n = 16 764). Internal centers contributed developmental data, whereas external centers did not. Deep neural networks predicted the presence of ICH and subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and/or epidural hemorrhage) and segmentations per case. Two ICH confidence scores are discussed: a calibrated classifier entropy score and a Dempster-Shafer score. Evaluation was completed by using receiver operating characteristic curve analysis and report turnaround time (RTAT) modeling on the evaluation set and on confidence score-defined subsets using bootstrapping. Results: The areas under the receiver operating characteristic curve for ICH were 0.97 (0.97, 0.98) and 0.95 (0.94, 0.95) on internal and external center data, respectively. On 80% of the data stratified by calibrated classifier and Dempster-Shafer scores, the system improved the Youden indexes, increasing them from 0.84 to 0.93 (calibrated classifier) and from 0.84 to 0.92 (Dempster-Shafer) for internal centers and increasing them from 0.78 to 0.88 (calibrated classifier) and from 0.78 to 0.89 (Dempster-Shafer) for external centers (P < .001). Models estimated shorter RTAT for AI-prioritized worklists with confidence measures than for AI-prioritized worklists without confidence measures, shortening RTAT by 27% (calibrated classifier) and 27% (Dempster-Shafer) for internal centers and shortening RTAT by 25% (calibrated classifier) and 27% (Dempster-Shafer) for external centers (P < .001). Conclusion: AI that provided statistical confidence measures for ICH detection on NCCT scans reliably detected and subtyped hemorrhages, identified high-confidence predictions, and improved worklist prioritization in simulation.Keywords: CT, Head/Neck, Hemorrhage, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2022.

2.
Sci Rep ; 11(1): 6876, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767226

RESUMO

With the rapid growth and increasing use of brain MRI, there is an interest in automated image classification to aid human interpretation and improve workflow. We aimed to train a deep convolutional neural network and assess its performance in identifying abnormal brain MRIs and critical intracranial findings including acute infarction, acute hemorrhage and mass effect. A total of 13,215 clinical brain MRI studies were categorized to training (74%), validation (9%), internal testing (8%) and external testing (8%) datasets. Up to eight contrasts were included from each brain MRI and each image volume was reformatted to common resolution to accommodate for differences between scanners. Following reviewing the radiology reports, three neuroradiologists assigned each study to abnormal vs normal, and identified three critical findings including acute infarction, acute hemorrhage, and mass effect. A deep convolutional neural network was constructed by a combination of localization feature extraction (LFE) modules and global classifiers to identify the presence of 4 variables in brain MRIs including abnormal, acute infarction, acute hemorrhage and mass effect. Training, validation and testing sets were randomly defined on a patient basis. Training was performed on 9845 studies using balanced sampling to address class imbalance. Receiver operating characteristic (ROC) analysis was performed. The ROC analysis of our models for 1050 studies within our internal test data showed AUC/sensitivity/specificity of 0.91/83%/86% for normal versus abnormal brain MRI, 0.95/92%/88% for acute infarction, 0.90/89%/81% for acute hemorrhage, and 0.93/93%/85% for mass effect. For 1072 studies within our external test data, it showed AUC/sensitivity/specificity of 0.88/80%/80% for normal versus abnormal brain MRI, 0.97/90%/97% for acute infarction, 0.83/72%/88% for acute hemorrhage, and 0.87/79%/81% for mass effect. Our proposed deep convolutional network can accurately identify abnormal and critical intracranial findings on individual brain MRIs, while addressing the fact that some MR contrasts might not be available in individual studies.


Assuntos
Encéfalo/anatomia & histologia , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Redes Neurais de Computação , Neuroimagem/métodos , Humanos , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA