Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(41): 22287-22292, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37774000

RESUMO

Protein palmitoylation, with more than 5000 substrates, is the most prevalent form of protein lipidation. Palmitoylated proteins participate in almost all areas of cellular physiology and have been linked to several human diseases. Twenty-three zDHHC enzymes catalyze protein palmitoylation with extensive overlap among the substrates of each zDHHC member. Currently, there is no global strategy to delineate the physiological substrates of individual zDHHC enzymes without perturbing the natural cellular pool. Here, we outline a general approach to accomplish this on the basis of synthetic orthogonal substrates that are only compatible with engineered zDHHC enzymes. We demonstrate the utility of this strategy by validating known substrates and use it to identify novel substrates of two human zDHHC enzymes. Finally, we employ this method to discover and explore conserved palmitoylation in a family of host restriction factors against pathogenic viruses, including SARS-CoV-2.


Assuntos
Aciltransferases , COVID-19 , Humanos , Aciltransferases/metabolismo , Especificidade por Substrato , SARS-CoV-2/metabolismo , Proteínas/metabolismo , Lipoilação
2.
Org Lett ; 25(36): 6767-6772, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669435

RESUMO

Prenylated proteins contain C15 or C20 isoprenoids linked to cysteine residues positioned near their C-termini. Here we describe the preparation of isoprenoid diphosphate analogues incorporating diazirine groups that can be used to probe interactions between prenylated proteins and other proteins that interact with them. Studies using synthetic peptides and whole proteins demonstrate that these diazirine analogues are efficient substrates for prenyltransferases. Photo-cross-linking experiments using peptides incorporating the diazirine-functionalized isoprenoids selectively cross-link to several different proteins. These new isoprenoid analogues should be broadly useful in the studies of protein prenylation.


Assuntos
Diazometano , Difosfatos , Peptídeos , Cisteína , Terpenos
3.
Chemistry ; 26(4): 927-938, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31625636

RESUMO

A unique approach to achieve site-selective C-H olefinations exclusively at the C-3- or C-8-positions in the quinoline framework has been developed by catalyst control. Distal C(3)-H functionalization is achieved by using palladium catalysis, whereas proximal C(8)-H functionalization is obtained by employing ruthenium catalysis. Switching the site selectivity within a single substrate directly indicates two diverse pathways, which are operating under the palladium- and ruthenium-catalyzed reaction conditions.

5.
J Org Chem ; 82(2): 1114-1126, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28029050

RESUMO

A palladium-catalyzed, ortho-selective C-H halogenation methodology is reported herein. The highlight of the work is the highly selective C(sp2)-H functionalization of benzyl nitriles in the presence of activated C(sp3)-H bond, which results in good yields of the halogenated products with excellent regioselectivity. Along with benzyl nitriles, aryl Weinreb amides and anilides have been evaluated for the transformation using aprotic conditions. Mechanistic studies yield interesting aspects with respect to the pathway of the reaction and the directing group abilities.

6.
Chemistry ; 22(47): 16986-16990, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27723223

RESUMO

A new class of Weinreb amides has been developed as directing groups for the ruthenium-catalysed regioselective oxidative C-H olefination. The new Weinreb amides successfully inhibit the N-O bond reductive cleavage usually associated with the cationic ruthenium system, thereby keeping intact the synthetic utility of Weinreb amides. Mechanistic studies reveal interesting aspects of the directing group capabilities of Weinreb amides when compared to simple amides of similar structures.

7.
Chem Asian J ; 10(7): 1505-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26033965

RESUMO

The ruthenium-catalyzed Fujiwara-Moritani reaction (oxidative-Heck reaction) of Weinreb amides is reported herein. The reaction affords exclusively ortho-C-H olefination products, has excellent substrate scope and tolerates halogen functionalities, which increase the synthetic utility of the method. A variety of activated olefins as well as styrenes can be employed as coupling partners.

8.
Org Lett ; 15(13): 3310-3, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23789894

RESUMO

A new approach for the regioselective functionalization of the C-3-position of quinolines is described. The method utilizes heteroatom guided regioselective C-3 palladation followed by arylation via transmetalation with aryl boronic acids to yield 3-aryl-N-acyl-1,2-dihydroquinolines. In a one-pot sequence, N-deacylation followed by aromatization leads to important 3-arylquinolines in good yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...