Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406102, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753742

RESUMO

Metal-catalyzed enantioselective conjugate arylations of electron-poor alkenes are highly selective processes for C(sp2)-C(sp3) bond formation. δ-Selective hydroarylations of electron-poor 1,3-dienes are less well developed and reactions that deliver high enantioselectivity while giving single alkene isomer products are elusive. Here we report the Rh-catalyzed δ-arylation of aryl-substituted 1,3-dienes that gives nearly exclusive Z-1,4-addition products (generally with >95:5 positional and geometrical selectivity). This remote functionalization provides access to chiral diarylated alkenes from readily available precursors poised for further functionalization, including in the synthesis of bioactive molecules. Mechanistic studies suggest that protonolysis of a Rh-allyl intermediate generated by diene insertion into a Rh-aryl is the turnover limiting step and occurs by an inner-sphere proton transfer pathway.

2.
Environ Geochem Health ; 46(2): 33, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227158

RESUMO

Groundwater quality in Hili, a semi-arid border region at Indo-Bangladesh border, was investigated in the post-monsoon season of 2021, succeeded by assessment of probabilistic health risk arising from fluoride (F-) and iron (Fe) intake, with the hypothesis that groundwater quality of the region was not satisfactory for human consumption and health, considering earlier reports on high groundwater F- and Fe in few of the neighboring districts. All water samples were found to be potable in terms of Ca2+, Mg2+, Cl-, SO42- and NO3-, , but F- and Fe exceeded prescribed safe limits for drinking water in about 48% and 7% samples. Almost all water samples were found to be good for irrigation in terms of sodium adsorption ratio (SAR), soluble sodium percentage (SSP), Kelly's index (KI), %Na and magnesium ratio (MR). The principal component analysis (PCA) identified three major factors influencing groundwater quality, explaining about 71.8% of total variance and indicated that groundwater quality was primarily influenced by geochemical factors. Carbonate and silicate weathering were mainly responsible for dissolution of minerals in groundwater. Non-carcinogenic risk due to cumulative impact of F-and Fe intake was in the order of THIChildren > THIInfant > THIAdult. As per Monte Carlo simulation run with 5000 trials to ascertain the order of probabilistic health risk, the most dominant governing factors behind non-carcinogenic risk caused by F-and Fe intake were their concentration (Ci) followed by ingestion rate (IR), and exposure duration (ED).


Assuntos
Fluoretos , Água Subterrânea , Adulto , Criança , Lactente , Humanos , Ferro , Bangladesh , Sódio , Água
3.
Angew Chem Int Ed Engl ; 62(2): e202210912, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36227158

RESUMO

Over the past few years, the development of efficient methods to construct high-valued N-heterocyclic molecules have received massive attention owing to their extensive application in the areas of medicinal chemistry, drug discovery, natural product synthesis and so on. To access those high-valued N-heterocycles, many methods have been developed. In this context, transition-metal-catalyzed denitrogenative annulation of 1,2,3-triazoles and 1,2,3,4-tetrazoles has appeared as a powerful synthetic tool because it offers a step- and atom-economical route for the preparation of the nitrogen-rich molecules. Compared with the denitrogenative annulation of various 1,2,3-triazole frameworks, annulation of 1,2,3,4-tetrazole remains more challenging due to the inertness of the tetrazole moiety. This Review summarizes the significant achievements made in the field of denitrogenative annulation of various 1,2,3-triazoles and 1,2,3,4-tetrazoles including some pioneering examples in this area of research. We anticipate that this denitrogenative annulation reaction will find broad applications in the pharmaceutical industry, drug discovery and other fields of medicinal chemistry.


Assuntos
Elementos de Transição , Triazóis/química , Tetrazóis , Química Farmacêutica , Catálise
4.
Chem Sci ; 13(40): 11817-11828, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320905

RESUMO

A catalytic system for intramolecular C(sp2)-H and C(sp3)-H amination of substituted tetrazolopyridines has been successfully developed. The amination reactions are developed using an iron-porphyrin based catalytic system. It has been demonstrated that the same iron-porphyrin based catalytic system efficiently activates both the C(sp2)-H and C(sp3)-H bonds of the tetrazole as well as azide-featuring substrates with a high level of regioselectivity. The method exhibited an excellent functional group tolerance. The method affords three different classes of high-value N-heterocyclic scaffolds. A number of important late-stage C-H aminations have been performed to access important classes of molecules. Detailed studies (experimental and computational) showed that both the C(sp2)-H and C(sp3)-H amination reactions involve a metalloradical activation mechanism, which is different from the previously reported electro-cyclization mechanism. Collectively, this study reports the discovery of a new class of metalloradical activation modes using a base metal catalyst that should find wide application in the context of medicinal chemistry, drug discovery and industrial applications.

5.
J Am Chem Soc ; 144(48): 21858-21866, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416746

RESUMO

A catalytic system for intermolecular benzylic C(sp3)-H amination is developed utilizing 1,2,3,4-tetrazole as a nitrene precursor via iron catalysis. This method enables direct installation of 2-aminopyridine into the benzylic and heterobenzylic position. The method selectively aminates 2° benzylic C(sp3)-H bond over the 3° and 1° benzylic C(sp3)-H bonds. Experimental studies reveal that the C(sp3)-H amination undergoes via the formation of a benzylic radical intermediate. This study reports the discovery of new method for 2-pyridine substituted benzylamine synthesis using inexpensive, biocompatible base metal catalysis that should have wide application in the context of medicinal chemistry and drug discovery.


Assuntos
Química Farmacêutica , Ferro
6.
Acc Chem Res ; 54(23): 4395-4409, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34761918

RESUMO

The pursuit for the discovery of new and powerful synthetic methods to access high-value N-heterocycles has been at the forefront of organic chemistry research for more than a century. Considering the importance of N-scaffolds in modern science, over the past few decades, great research efforts have been made to develop efficient synthetic methods for the construction of nitrogen-rich molecules. Among many efforts, transition metal catalyzed denitrogenative annulation reaction has emerged as a cornerstone due to its innate versatility and wider scope of application.The denitrogenative annulation approach offers clear advantages over many existing methods, as it enables effective, single-step interconversion of easily available feedstocks into a variety of other important N-containing heterocyclic frameworks. Recently, transition metal catalyzed denitrogenative annulation reaction of the 1,2,3-triazole via a metal carbene intermediate sparked significant interest in the application of various important heterocycle syntheses. Denitrogenative annulation reaction of 1,2,3-triazoles proceeds via an ionic mechanism. Recently, we demonstrated a new concept for the denitrogenative reaction of triazoles with alkenes and alkynes via in situ generated 2-(diazomethyl)pyridines. The method takes advantage of the inherent properties of a Co(III)-carbene radical intermediate and is the first report of the denitrogenative annulation/cyclopropanation by a radical-activation mechanism.On the other hand, in contrast to the denitrogenative annulation of 1,2,3-triazole, annulation reaction of 1,2,3,4-tetrazole (a surrogate of azide having an important pyridyl unit) via metal nitrene remains a big challenge. Previously, flash vacuum pyrolysis studies had been used for nitrene-nitrene rearrangement of 1,2,3,4-tetrazole at high temperature. This Account summarizes our recent efforts in developing transition metal catalyzed denitrogenative annulation of 1,2,3-triazoles via a radical mechanism and 1,2,3,4-tetrazoles via metal nitrene to access important nitrogen-rich molecules. We demonstrated that the 1,2,3,4-tetrazole under Ir-catalyzed reaction conditions can produce a productive Ir-nitrene intermediate that can successfully be employed for the construction of a wide number of α-carbolines and 7-azaindoles. Moreover, we developed an iron-based unique strategy for the intermolecular denitrogenative annulation reaction between tetrazoles and alkynes. The reaction overcomes the traditional click reaction and proceeds via an unprecedented metalloradical activation mechanism. Furthermore, we used our understanding of tetrazole reactivity to design an iron-catalyzed intramolecular denitrogenative C(sp3)-H amination reaction of primary, secondary, and tertiary centers by using a metalloradical activation concept. At the same time, we also developed a general catalytic method to enable two distinct reactions (1,3-cycloaddition and denitrogenative annulation) using Mn(TPP)Cl that afforded two different classes of nitrogen heterocycles. Mechanistic studies showed that although the click reaction likely proceeds through an ionic mechanism and the denitrogenative annulation reaction likely proceeds via an electrophilic metallonitrene intermediate rather than a metallonitrene radical intermediate. Finally, we report an iron-catalyzed rearrangement reaction (ring expansion/migration) that proceeded with an unprecedented level of selectivity, reactivity, and functional group tolerance offering rapid access to numerous complex N-heterocycles. We believe that our continuous efforts in this field would be beneficial for pharmaceutical industries, drug discovery, and other fields of medicinal chemistry.

7.
Angew Chem Int Ed Engl ; 60(16): 8772-8780, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33463874

RESUMO

An iron-catalyzed denitrogenative rearrangement of 1,2,3,4-tetrazole is developed over the competitive C(sp3 )-H amination. This catalytic rearrangement reaction follows an unprecedented metalloradical activation mechanism. Employing the developed method, a wide number of complex-N-heterocyclic product classes have been accessed. The synthetic utility of this radical activation method is showcased with the short synthesis of a bioactive molecule. Collectively, this discovery underlines the progress of radical activation strategy that should find wide application in the perspective of medicinal chemistry, drug discovery and natural product synthesis research.

8.
Angew Chem Int Ed Engl ; 60(1): 304-312, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32929858

RESUMO

A general catalytic method using a Mn-porphyrin-based catalytic system is reported that enables two different reactions (click reaction and denitrogenative annulation) and affords two different classes of nitrogen heterocycles, 1,5-disubstituted 1,2,3-triazoles (with a pyridyl motif) and 1,2,4-triazolo-pyridines. Mechanistic investigations suggest that although the click reaction likely proceeds through an ionic mechanism, which is different from the traditional click reaction, the denitrogenative annulation reaction likely proceeds via an electrophilic metallonitrene intermediate rather than a metalloradical intermediate. Collectively, this method is highly efficient and offers several advantages over other methods. For example, this method excludes a multi-step synthesis of the N-heterocyclic molecules described and produces only environmentally benign N2 gas a by-product.

9.
J Am Chem Soc ; 142(38): 16211-16217, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32893615

RESUMO

A concept for intramolecular denitrogenative C(sp3)-H amination of 1,2,3,4-tetrazoles bearing unactivated primary, secondary, and tertiary C-H bonds is discovered. This catalytic amination follows an unprecedented metalloradical activation mechanism. The utility of the method is showcased with the short synthesis of a bioactive molecule. Moreover, an initial effort has been embarked on for the enantioselective C(sp3)-H amination through the catalyst design. Collectively, this study underlines the development of C(sp3)-H bond functionalization chemistry that should find wide application in the context of drug discovery and natural product synthesis.

10.
Angew Chem Int Ed Engl ; 58(33): 11439-11443, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31187559

RESUMO

A unique concept for the intermolecular denitrogenative annulation of 1,2,3,4-tetrazoles and alkynes was discovered by using a catalytic amount of Fe(TPP)Cl and Zn dust. The reaction precludes the traditional, more favored click reaction between an organic azide and alkynes, and instead proceeds by an unprecedented metalloradical activation. The method is anticipated to advance access to the construction of important basic nitrogen heterocycles, which will in turn enable discoveries of new drug candidates.

11.
J Am Chem Soc ; 140(27): 8429-8433, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29953229

RESUMO

An efficient strategy for the intramolecular denitrogenative transannulation/C(sp2)-H amination of 1,2,3,4-tetrazoles bearing C8-substituted arenes, heteroarenes, and alkenes is described. The process involves the generation of the metal-nitrene intermediate from tetrazole by the combination of [Cp*IrCl2]2 and AgSbF6. It has been shown that the reaction proceeds via an unprecedented electrocyclization process. The method has been successfully applied for the synthesis of a diverse array of α-carbolines and 7-azaindoles.

12.
Angew Chem Int Ed Engl ; 57(8): 2238-2243, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29235224

RESUMO

A new catalytic method for the denitrogenative transannulation/cyclopropanation of in-situ-generated 2-(diazomethyl)pyridines is described using a cobalt-catalyzed radical-activation mechanism. The method takes advantage of the inherent properties of a CoIII -carbene radical intermediate and is the first report of denitrogenative transannulation/cyclopropanation by a radical-activation mechanism, which is supported by various control experiments. The synthetic benefits of the metalloradical approach are showcased with a short total synthesis of (±)-monomorine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...