Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 14(1): 26, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376644

RESUMO

Evidence of fungal coexistence in humans points towards fungal adaptation to the host environment, like the skin. The human commensal Malassezia has evolved, especially residing in sebum-rich areas of the mammalian body where it can get the necessary nutrition for its survival. This fungus is primarily responsible for skin diseases like Pityriasis versicolor (PV), characterized by hypo or hyperpigmented skin discoloration and erythematous macules. In this manuscript, we report a 19-year-old healthy female who presented with a one-year history of reddish, hypopigmented, asymptomatic lesions over the chest and a raised erythematous lesion over the face. Upon clinical observation, the patient displayed multiple erythematous macules and erythematous papules over the bilateral malar area of the face, along with multiple hypopigmented scaly macules present on the chest and back. Based on the above clinical findings, a diagnosis of PV and Acne vulgaris (AV) was made. Interestingly, the patient was immunocompetent and didn't have any comorbidities. Upon isolation of skin scrapings and post-culturing, we found the existence of three fungal genera in the same region of the patient's body. We further went on to confirm the identity of the particular species and found it to represent Malassezia, Rhodotorula, and Candida. We report how Malassezia, the predominant microbial resident skin fungus, coexists with other fungal members of the skin mycobiome. This study on an applied aspect of microbiology also shows how important it is to identify the fungal organism associated with skin infections so that appropriate therapeutics can be advised to avoid cases of relapse.

2.
Front Genet ; 14: 1035052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873936

RESUMO

Introduction: BRIP1 (BRCA1-interacting protein 1) is one of the major interacting partners of BRCA1, which plays an important role in repair by homologous recombination (HR). This gene is mutated in around 4% of cases of breast cancer; however, its mechanism of action is unclear. In this study, we presented the fundamental role of BRCA1 interactors BRIP1 and RAD50 in the development of differential severity in triple-negative breast cancer (TNBC) among various affected individuals. Methods: We have analyzed the expression of DNA repair-related genes in different BC cells using Real-time PCR and western blotting analysis and assessed changes in stemness property and proliferation through Immunophenotyping. We have performed cell cycle analysis to see the defect in checkpoints and also immunofluorescence assay to confirm the accumulation of gamma-H2AX and BRCA1 foci and subsequent incidence. We have performed a severity analysis using TCGA data sets for comparing the expression in MDA-MB-468 MDA-MB-231 and MCF7 cell line. Results: We showed that in some TNBC cell lines such as MDA-MB-231, the functioning of both BRCA1/TP53 is compromised. Furthermore, the sensing of DNA damage is affected. Due to less damage-sensing capability and low availability of BRCA1 at the damage sites, the repair by HR becomes inefficient, leading to more damage. Accumulation of damage sends a signal for over activation of NHEJ repair pathways. Over expressed NHEJ molecules with compromised HR and checkpoint conditions lead to higher proliferation and error-prone repair, which increases the mutation rate and corresponding tumour severity. The in-silico analysis of the TCGA datasets with gene expression in the deceased population showed a significant correlation of BRCA1 expression with overall survival (OS) in TNBCs (0.0272). The association of BRCA1 with OS became stronger with the addition of BRIP1 expression (0.000876**). Conclusion: The severity phenotypes were more in cells having compromised BRCA1-BRIP1 functioning. Since the OS is directly proportional to the extent of severity, the data analysis hints at the role of BRIP1 in controlling the severity of TNBC.

3.
Front Genet ; 12: 709315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490039

RESUMO

Over the ages, fungi have associated with different parts of the human body and established symbiotic associations with their host. They are mostly commensal unless there are certain not so well-defined factors that trigger the conversion to a pathogenic state. Some of the factors that induce such transition can be dependent on the fungal species, environment, immunological status of the individual, and most importantly host genetics. In this review, we discuss the different aspects of how host genetics play a role in fungal infection since mutations in several genes make hosts susceptible to such infections. We evaluate how mutations modulate the key recognition between the pathogen associated molecular patterns (PAMP) and the host pattern recognition receptor (PRR) molecules. We discuss the polymorphisms in the genes of the immune system, the way it contributes toward some common fungal infections, and highlight how the immunological status of the host determines fungal recognition and cross-reactivity of some fungal antigens against human proteins that mimic them. We highlight the importance of single nucleotide polymorphisms (SNPs) that are associated with several of the receptor coding genes and discuss how it affects the signaling cascade post-infection, immune evasion, and autoimmune disorders. As part of personalized medicine, we need the application of next-generation techniques as a feasible option to incorporate an individual's susceptibility toward invasive fungal infections based on predisposing factors. Finally, we discuss the importance of studying genomic ancestry and reveal how genetic differences between the human race are linked to variation in fungal disease susceptibility.

4.
Cell Div ; 16(1): 4, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34493312

RESUMO

BACKGROUND: The budding yeast protein Chl1p is a nuclear protein required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination, ageing and plays an instrumental role in chromatin remodeling. This helicase is known to preserve genome integrity and spindle length in S-phase. Here we show additional roles of Chl1p at G1/S phase of the cell cycle following DNA damage. RESULTS: G1 arrested cells when exposed to DNA damage are more sensitive and show bud emergence with faster kinetics in chl1 mutants compared to wild-type cells. Also, more damage to DNA is observed in chl1 cells. The viability falls synergistically in rad24chl1 cells. The regulation of Chl1p on budding kinetics in G1 phase falls in line with Rad9p/Chk1p and shows a synergistic effect with Rad24p/Rad53p. rad9chl1 and chk1chl1 shows similar bud emergence as the single mutants chl1, rad9 and chk1. Whereas rad24chl1 and rad53chl1 shows faster bud emergence compared to the single mutants rad24, rad53 and chl1. In presence of MMS induced damage, synergistic with Rad24p indicates Chl1p's role as a checkpoint at G1/S acting parallel to damage checkpoint pathway. The faster movement of DNA content through G1/S phase and difference in phosphorylation profile of Rad53p in wild type and chl1 cells confirms the checkpoint defect in chl1 mutant cells. Further, we have also confirmed that the checkpoint defect functions in parallel to the damage checkpoint pathway of Rad24p. CONCLUSION: Chl1p shows Rad53p independent bud emergence and Rad53p dependent checkpoint activity in presence of damage. This confirms its requirement in two different pathways to maintain the G1/S arrest when cells are exposed to damaging agents. The bud emergence kinetics and DNA segregation were similar to wild type when given the same damage in nocodazole treated chl1 cells which establishes the absence of any role of Chl1p at the G2/M phase. The novelty of this paper lies in revealing the versatile role of Chl1p in checkpoints as well as repair towards regulating G1/S transition. Chl1p thus regulates the G1/S phase by affecting the G1 replication checkpoint pathway and shows an additive effect with Rad24p for Rad53p activation when damaging agents perturb the DNA. Apart from checkpoint activation, it also regulates the budding kinetics as a repair gene.

5.
Oncol Rev ; 15(1): 519, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-34322202

RESUMO

BACH1 encodes for a protein that belongs to RecQ DEAH helicase family and interacts with the BRCT repeats of BRCA1. The N-terminus of BACH1 functions in DNA metabolism as DNA-dependent ATPase and helicase. The C-terminus consists of BRCT domain, which interacts with BRCA1 and this interaction is one of the major regulator of BACH1 function. BACH1 plays important roles both in phosphorylated as well as dephosphorylated state and functions in coordination with multiple signaling molecules. The active helicase property of BACH1 is maintained by its dephosphorylated state. Imbalance between these two states enhances the development and progression of the diseased condition. Currently BACH1 is known as a tumor suppressor gene based on the presence of its clinically relevant mutations in different cancers. Through this review we have justified it to be named as an oncogene. In this review, we have explained the mechanism of how BACH1 in collaboration with BRCA1 or independently regulates various pathways like cell cycle progression, DNA replication during both normal and stressed situation, recombination and repair of damaged DNA, chromatin remodeling and epigenetic modifications. Mutation and overexpression of BACH1 are significantly found in different cancer types. This review enlists the molecular players which interact with BACH1 to regulate DNA metabolic functions, thereby revealing its potential for cancer therapeutics. We have identified the most mutated functional domain of BACH1, the hot spot for tumorigenesis, justifying it as a target molecule in different cancer types for therapeutics. BACH1 has high potentials of transforming a normal cell into a tumor cell if compromised under certain circumstances. Thus, through this review, we justify BACH1 as an oncogene along with the existing role of being a tumor suppressant.

6.
PLoS One ; 14(9): e0222240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31498830

RESUMO

Calcium is the key macromineral having a role in skeletal structure and function, muscle contraction, and neurotransmission. Bone remodeling is maintained through a constant balance between calcium resorption and deposition. Calcium deficiency is resolved through calcium supplementation, and among the supplements, water-soluble organic molecules attracted great pharmaceutical interest. Calcium glucoheptonate is a highly water-soluble organic calcium salt having clinical use; however, detailed investigations on its biological effects are limited. We assessed the effects of calcium glucoheptonate on cell viability and proliferation of osteoblast-like MG-63 cells. Calcium uptake and mineralization were evaluated using Alizarin red staining of osteoblast-like MG-63 cells treated with calcium glucoheptonate. Expression of osteogenic markers were monitored by western blotting, immunofluorescence, and qRT-PCR assays. Increased proliferation and calcium uptake were observed in the MG-63 cells treated with calcium glucoheptonate. The treatment also increased the expression of osteopontin and osteogenic genes such as collagen-1, secreted protein acidic and cysteine rich (SPARC), and osteocalcin. Calcium glucoheptonate treatment did not exert any cytotoxicity on colorectal and renal epithelial cells, indicating the safety of the treatment. This is the first report with evidence for its beneficial effect for pharmaceutical use in addressing calcium deficiency conditions.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Açúcares Ácidos/farmacologia , Células CACO-2 , Cálcio/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Colágeno Tipo I/metabolismo , Células HEK293 , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteonectina/metabolismo , Osteopontina/metabolismo
7.
Nucleic Acids Res ; 34(20): 5880-91, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17062629

RESUMO

The budding yeast protein, Chl1p, is required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination and aging. In this work, we show that Chl1p is also required for viability when DNA replication is stressed, either due to mutations or if cells are treated with genotoxic agents like methylmethane sulfonate (MMS) and ultraviolet (UV) rays. The chl1 mutation caused synthetic growth defects with mutations in DNA replication genes. At semi-permissive temperatures, the double mutants grew poorly, were less viable and showed nuclear fragmentation. They were, however, not limited in their bulk DNA synthesis. When chl1 cells were treated with relatively low levels of MMS in S-phase, they lost viability. The S-phase DNA damage checkpoint pathway, however, remained active in these cells. Agarose gel electrophoresis of genomic DNA isolated from wild-type and chl1 cells, after recovery from MMS treatment, suggested that the wild-type was more proficient in the repair of DNA damage than the mutant. Our work suggests that Chl1p is required for genome integrity when cells suffer endogenously or exogenously induced DNA damage.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Dano ao DNA , Fase S/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Alquilantes/toxicidade , Proteínas Cromossômicas não Histona/genética , Reparo do DNA , Replicação do DNA , Genoma Fúngico , Metanossulfonato de Metila/toxicidade , Mutação , Fase S/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Raios Ultravioleta
8.
Biochem Biophys Res Commun ; 337(1): 167-72, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16182251

RESUMO

We show that the budding yeast protein Chl1p, required for sister-chromatid cohesion, also modulates transcriptional silencing at HMR and telomeres. The absence of this protein results in increased silencing at HMR and, conversely, in decreased silencing at the telomere. The regulation of silencing by Chl1p at these two loci is dependent on the presence of Sir proteins. Chl1p also acts synergistically with Sir2p to suppress rDNA recombination. In the absence of this protein, yeast cells exhibit reduced life span and hypersensitivity to heat stress. These observations suggest a role of Chl1p in regulating chromatin structure.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , DNA Ribossômico/genética , Inativação Gênica , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã , Proteínas Cromossômicas não Histona/genética , Regulação Fúngica da Expressão Gênica , Temperatura Alta , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...