Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Hum Genet ; 69(5): 205-213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409498

RESUMO

Psoriasis is a multifactorial genetic disorder manifested by hyperproliferation and abnormal differentiation of epidermal keratinocytes, along with the infiltration of inflammatory cells into the skin. Although ~80 genetic susceptibility variants were reported in psoriasis, many loci showed population-specific associations, warranting the need for more population-specific association studies in psoriasis. We determined the association of forty single nucleotide polymorphisms (SNPs) among 2136 psoriasis patients and normal individuals from eastern India. We investigated the expression of corresponding genes and evaluated the protein structure stability for the genes with susceptible coding variants. We found fifteen SNPs significantly associated with psoriasis, while additional three SNPs showed significant association when we classified the patients based on the presence of HLA-Cw6 allele. Epistatic interaction between HLA-Cw6 and other associated loci showed significant association with the SNPs at PSORS1 region, along with other five SNPs outside PSORS1. Three genes showed significant differential expression in psoriatic tissues compared to the adjacent normal skin tissues but were not differential when classified the patients based on their genotypes. SNP rs495337 at SPATA2 (Spermatogenesis Associated 2) showed a 1.2-fold increased risk among the HLA-Cw6 patients compared to combined samples. We found significant downregulation of SPATA2 among the patients with risk genotypes and HLA-Cw6 allele compared to the non-risk genotypes. Protein structure stability analysis showed reduced structural stability for all the mutant residues caused by the associated coding variants. Our study evaluated the genetic associations of psoriasis-susceptible variants in India and evaluated the possible functional significance of these associated variants in psoriasis.


Assuntos
Predisposição Genética para Doença , Antígenos HLA-C , Polimorfismo de Nucleotídeo Único , Psoríase , Humanos , Psoríase/genética , Índia/epidemiologia , Masculino , Feminino , Antígenos HLA-C/genética , Adulto , Alelos , Pessoa de Meia-Idade , Genótipo , Estudos de Associação Genética , Estudos de Casos e Controles
4.
J Invest Dermatol ; 141(11): 2630-2638.e7, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34029573

RESUMO

Functional studies to delineate the molecular mechanisms of causal genetic variants are the main focus in the post-GWAS era. Previous GWASs have identified >50 susceptibility loci associated with psoriasis. Functional understanding of the biology underlying the disease risk of most of these associated loci is unclear. In this study, we identified a regulatory SNP at the putative enhancer of the LCE3A gene within the epidermal differentiation complex that showed epistatic interaction with HLA-Cw6. The variant allele disrupted signal transducer and activator of transcription 3 binding to the region, thereby regulating the expression of the downstream LCE3A gene. Electrophoretic mobility shift and pulldown assay confirmed the preferential binding of signal transducer and activator of transcription 3 to the DNA with a wild-type allele compared with the DNA with a variant allele. The reporter assay further validated the IL-6‒stimulated phosphorylated signal transducer and activator of transcription 3‒mediated LCE3A activation in the presence of the wild-type allele. Interestingly, the presence of the HLA-Cw6 allele leads to IL-6‒mediated phosphorylation of signal transducer and activator of transcription 3, followed by its nuclear localization in the epidermal keratinocytes of psoriatic skin, suggesting indirect interaction of the HLA-Cw6 allele and a regulatory SNP upstream of the LCE3A gene. This study reflects an interesting approach to dissecting the molecular mechanism underlying the genetic interaction observed between HLA-Cw6 and LCE3A in psoriasis pathogenesis.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/genética , Antígenos HLA-C/genética , Psoríase/genética , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Interleucina-1alfa/fisiologia , Interleucina-6/fisiologia , Fosforilação , Polimorfismo de Nucleotídeo Único , Psoríase/etiologia , Fator de Transcrição STAT3/metabolismo
5.
Front Oncol ; 11: 614448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708627

RESUMO

Infection with specific pathogens and alterations in tissue commensal microbial composition are intricately associated with the development of many human cancers. Likewise, dysbiosis of oral microbiome was also shown to play critical role in the initiation as well as progression of oral cancer. However, there are no reports portraying changes in oral microbial community in the patients of Indian subcontinent, which has the highest incidence of oral cancer per year, globally. To establish the association of bacterial dysbiosis and oral squamous cell carcinoma (OSCC) among the Indian population, malignant lesions and anatomically matched adjacent normal tissues were obtained from fifty well-differentiated OSCC patients and analyzed using 16S rRNA V3-V4 amplicon based sequencing on the MiSeq platform. Interestingly, in contrast to the previous studies, a significantly lower bacterial diversity was observed in the malignant samples as compared to the normal counterpart. Overall our study identified Prevotella, Corynebacterium, Pseudomonas, Deinococcus and Noviherbaspirillum as significantly enriched genera, whereas genera including Actinomyces, Sutterella, Stenotrophomonas, Anoxybacillus, and Serratia were notably decreased in the OSCC lesions. Moreover, we demonstrated HPV-16 but not HPV-18 was significantly associated with the OSCC development. In future, with additional validation, this panel could directly be applied into clinical diagnostic and prognostic workflows for OSCC in Indian scenario.

6.
Infect Genet Evol ; 85: 104445, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32615316

RESUMO

The recent pandemic of SARS-CoV-2 infection has affected more than 3.0 million people worldwide with more than 200 thousand reported deaths. The SARS-CoV-2 genome has the capability of gaining rapid mutations as the virus spreads. Whole-genome sequencing data offers a wide range of opportunities to study mutation dynamics. The advantage of an increasing amount of whole-genome sequence data of SARS-CoV-2 intrigued us to explore the mutation profile across the genome, to check the genome diversity, and to investigate the implications of those mutations in protein stability and viral transmission. We have identified frequently mutated residues by aligning ~660 SARS-CoV-2 genomes and validated in 10,000 datasets available in GISAID Nextstrain. We further evaluated the potential of these frequently mutated residues in protein structure stability of spike glycoprotein and their possible functional consequences in other proteins. Among the 11 genes, surface glycoprotein, nucleocapsid, ORF1ab, and ORF8 showed frequent mutations, while envelop, membrane, ORF6, ORF7a and ORF7b showed conservation in terms of amino acid substitutions. Combined analysis with the frequently mutated residues identified 20 viral variants, among which 12 specific combinations comprised more than 97% of the isolates considered for the analysis. Some of the mutations across different proteins showed co-occurrences, suggesting their structural and/or functional interaction among different SARS-COV-2 proteins, and their involvement in adaptability and viral transmission. Analysis of protein structure stability of surface glycoprotein mutants indicated the viability of specific variants and are more prone to be temporally and spatially distributed across the globe. A similar empirical analysis of other proteins indicated the existence of important functional implications of several variants. Identification of frequently mutated variants among COVID-19 patients might be useful for better clinical management, contact tracing, and containment of the disease.


Assuntos
Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Domínios Proteicos , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Sequenciamento Completo do Genoma
7.
J Appl Genet ; 60(1): 13-25, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30368734

RESUMO

We designed a set of 580 simple sequence repeat markers; 506 from transcription factor-coding genes, and 74 from long non-coding RNAs and designated them as regulatory gene-derived simple sequence repeat (ReG-SSR) markers. From this set, we could anchor 559 ReG-SSR markers on 15 flax chromosomes with an average marker distance of 0.56 Mb. Thirty-one polymorphic ReG-SSR primers, amplifying SSR loci length of at least 20 bp were chosen from 134 screened primers. This primer set was used to characterize a diversity panel of 93 flax accessions. The panel included 33 accessions from India, including released varieties, dual-purpose lines and landraces, and 60 fiber flax accessions from the global core collection. Thirty-one ReG-SSR markers generated 76 alleles, with an average of 2.5 alleles per primer and a mean allele frequency of 0.77. These markers recorded 0.32 average gene diversity, 0.26 polymorphism information content and 1.35% null alleles. All the 31 ReG-SSR loci were found selectively neutral and showed no evidence of population reduction. A model-based clustering analysis separated the flax accessions into two sub-populations-Indian and global, with some accessions showing admixtures. The distinct clustering pattern of the Indian accessions compared to the global accessions, conforms to the principal coordinate analysis, genetic dissimilarity-based unweighted neighbor-joining tree and analysis of molecular variance. Fourteen flax accessions with 99.3% allelic richness were found optimum to adopt in breeding programs. In summary, the genome-wide ReG-SSR markers will serve as a functional marker resource for genetic and phenotypic relationship studies, marker-assisted selections, and provide a basis for selection of accessions from the Indian and global gene pool in fiber flax breeding programs.


Assuntos
Linho/genética , Variação Genética , Genética Populacional , Repetições de Microssatélites , Mapeamento Cromossômico , DNA de Plantas/genética , Frequência do Gene , Marcadores Genéticos , Genoma de Planta , Genótipo , Índia , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...