Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794450

RESUMO

Agriculture is confronted with the challenge of ensuring global food security, yet the rapid expansion of salinity stress undoubtedly restricts plant productivity in cultivable areas, posing a significant threat to crop yields. Arbuscular mycorrhizal fungi (AMFs) have emerged as a biological tool for enhancing plant salt stress tolerance. To utilize this biological tool, this study evaluated the response in growth and physiological parameters of tolerant (Karaisali) and sensitive (Demre) pepper genotypes. The experiment involved mycorrhizal-treated (Glomus clarium) and non-mycorrhizal (control) plants of both the tolerant and sensitive pepper genotypes. The plants were subjected to two salt doses: 75 and 150 mM. The plant growth and physiological parameters were measured at 40 days after transplanting. The mycorrhizal activity was found to be significantly more effective in the sensitive genotype. We found notable differences in mycorrhizal activity between the pepper genotypes under salt stress conditions, with the sensitive genotype "Demre" showing greater responsiveness to mycorrhizal association compared with the "Karaisali" variety. Under both moderate (75 mM NaCl) and higher salt stress levels (150 mM NaCl), both the "Karaisali" and "Demre" varieties exhibited substantial increases in their shoot dry weights. However, these increases were consistently higher in the "Demre" plants. Moreover, the AMFs demonstrated significant enhancements in photosynthesis rates under both moderate and high salinity levels in both genotypes. Overall, our findings suggest that AMFs play a crucial role in improving plant growth, water status, and photosynthesis characteristics, particularly in salt-sensitive pepper genotypes, under moderate-to-high salinity levels. In conclusion, the plant growth, water status, and photosynthesis characteristics of the salt-sensitive pepper genotype were significantly improved by AMFs at medium and high salinity levels, such as 75 mM and 150 mM NaCl, respectively.

2.
Sci Rep ; 14(1): 1616, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238449

RESUMO

In soilless cultivation, plants are grown with nutrient solutions prepared with mineral nutrients. Beneficial microorganisms are very important in plant nutrition. However, they are not present in soilless culture systems. In this study we investigated the impact of introducing Plant Growth Promoting Rhizobacteria (PGPR) as an alternative to traditional mineral fertilizer in hydroponic floating lettuce cultivation. By reducing mineral fertilizers at various ratios (20%, 40%, 60%, and 80%), and replacing them with PGPR, we observed remarkable improvements in multiple growth parameters. Applying PGPR led to significant enhancements in plant weight, leaf number, leaf area, leaf dry matter, chlorophyll content, yield, and nutrient uptake in soilles grown lettuce. Combining 80% mineral fertilizers with PGPR demonstrated a lettuce yield that did not significantly differ from the control treatment with 100% mineral fertilizers. Moreover, PGPR application improved the essential mineral concentrations and enhanced human nutritional quality, including higher levels of phenols, flavonoids, vitamin C, and total soluble solids. PGPR has potential as a sustainable substitute for synthetic mineral fertilizers in hydroponic floating lettuce cultivation, leading to environmentally friendly and nutritionally enriched farming.


Assuntos
Alphaproteobacteria , Fertilizantes , Humanos , Fertilizantes/análise , Lactuca , Minerais , Agricultura , Valor Nutritivo
3.
Sci Rep ; 12(1): 20917, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463305

RESUMO

Hydroponics is one of the systems in agriculture which reinforce productivity by controlling environmental and growing conditions. In this study, we evaluated the effect of three bio-fertilizers, namely bacteria, micro-algae, and mycorrhiza, on basil leaf yield and quality (Ocimum basilicum L.) in a floating culture system. Soil has rich amounts of beneficial microorganisms, supporting plant nutrition, producing phytohormones, controlling phytopathogens, and improving soil structure. However, soilless culture usually contains no beneficial microorganisms if we do not include them in the system. This study aims to evaluate the response of three bio-fertilizers where mineral fertilizers are reduced by 50%. Considering the total harvest data, bacteria, mycorrhiza, and micro-algae treatments increased basil yield compared to 50% control by about 18.94%, 13.94%, and 5.72%, respectively. The maximum total yield and leaf area were recorded using bacteria with 2744 g m-2 and 1528 cm2 plant-1. Plants with mycorrhiza achieved the highest number of leaves and branches, with 94.3 leaves plant-1 and 24.50 branches plant-1, respectively. It was observed that this bio-fertilizer increased the formation of lateral branches in the basil plant without thickening its stems. In addition, bacteria and mycorrhiza induced the highest percentage of dry matter and total soluble solids. The effect of bio-fertilizers on basil leaf EC and pH was insignificant for all the treatments at different harvest periods (p < 0.05). Using bio-fertilizers enhanced the intake of nutrients N (nitrogen), P (phosphorus), K (potassium), Ca (calcium), Mg (magnesium), Fe (iron), Mn (manganese), Zn (zinc), and Cu (copper). Using bio-fertilizers represents a promising and environmentally friendly approach to increasing crop yields and ameliorating quality and antioxidant compounds with fewer resources. An application of bio-fertilizers in hydroponic cultivation of basil cv. 'Dino' reduced the need for mineral fertilizers. At the same time, bio-fertilizers affected an increased plant yield and improved product quality. Furthermore, the bacteria had a pronounced enhancing effect on the increase of phenol and flavonoids in the leaves of basil plants.


Assuntos
Micorrizas , Ocimum basilicum , Nitratos , Antioxidantes , Fertilizantes , Óxidos de Nitrogênio , Minerais , Folhas de Planta , Potássio , Solo , Ferro
4.
Mol Genet Genomics ; 291(1): 129-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26193947

RESUMO

Members of basic helix-loop-helix (bHLH) gene family found in all eukaryotes play crucial roles in response to stress. Though, most eukaryotes carry the proteins of this family, biological functions of the most bHLH family members are not deeply evaluated in plants. In this study, we conducted a comprehensive genome-wide analysis of bHLH transcription factors in salt tolerant common bean. We identified 155 bHLH protein-encoding genes (PvbHLH) by using in silico comparative genomics tools. Based on the phylogenetic tree, PvbHLH genes were classified into 8 main groups with 21 subfamilies. Exon-intron analysis indicated that proteins belonging to same main groups exhibited a closely related gene structure. While, the PvbHLH gene family has been mainly expanded through segmental duplications, a total of 11 tandem duplication were detected. Genome-wide expression analysis of bHLH genes showed that 63 PvbHLH genes were differentially expressed in at least one tissue. Three of them displayed higher expression values in both leaf and root tissues. The in silico micro-RNA target transcript analyses revealed that totally 100 PvHLH genes targeted by 86 plant miRNAs. The most abundant transcripts, which were targeted by all 18 plant miRNA, were belonging to PvHLH-22 and PvHLH-44 genes. The expression of 16 PvbHLH genes in the root and leaf tissues of salt-stressed common bean was evaluated using qRT-PCR. Among them, two of PvbHLHs, PvbHLH-54, PvbHLH-148, were found to be up-regulated in both tissues in correlation with RNA-seq measurements. The results of this study could help improve understanding of biological functions of common bean bHLH family under salt stress. Additionally, it may provide basic resources for analyzing bHLH protein function for improving economic, agronomic and ecological benefit in common bean and other species.


Assuntos
Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Mapeamento Cromossômico/métodos , Éxons/genética , Duplicação Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Íntrons/genética , MicroRNAs/genética , Família Multigênica/genética , Filogenia , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA