Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Imaging ; 24(1): 156, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910241

RESUMO

Parkinson's disease (PD) is challenging for clinicians to accurately diagnose in the early stages. Quantitative measures of brain health can be obtained safely and non-invasively using medical imaging techniques like magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT). For accurate diagnosis of PD, powerful machine learning and deep learning models as well as the effectiveness of medical imaging tools for assessing neurological health are required. This study proposes four deep learning models with a hybrid model for the early detection of PD. For the simulation study, two standard datasets are chosen. Further to improve the performance of the models, grey wolf optimization (GWO) is used to automatically fine-tune the hyperparameters of the models. The GWO-VGG16, GWO-DenseNet, GWO-DenseNet + LSTM, GWO-InceptionV3 and GWO-VGG16 + InceptionV3 are applied to the T1,T2-weighted and SPECT DaTscan datasets. All the models performed well and obtained near or above 99% accuracy. The highest accuracy of 99.94% and AUC of 99.99% is achieved by the hybrid model (GWO-VGG16 + InceptionV3) for T1,T2-weighted dataset and 100% accuracy and 99.92% AUC is recorded for GWO-VGG16 + InceptionV3 models using SPECT DaTscan dataset.


Assuntos
Algoritmos , Aprendizado Profundo , Imageamento por Ressonância Magnética , Doença de Parkinson , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Doença de Parkinson/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino
2.
Sci Rep ; 14(1): 5287, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438528

RESUMO

In this paper, NeuralProphet (NP), an explainable hybrid modular framework, enhances the forecasting performance of pandemics by adding two neural network modules; auto-regressor (AR) and lagged-regressor (LR). An advanced deep auto-regressor neural network (Deep-AR-Net) model is employed to implement these two modules. The enhanced NP is optimized via AdamW and Huber loss function to perform multivariate multi-step forecasting contrast to Prophet. The models are validated with COVID-19 time-series datasets. The NP's efficiency is studied component-wise for a long-term forecast for India and an overall reduction of 60.36% and individually 34.7% by AR-module, 53.4% by LR-module in MASE compared to Prophet. The Deep-AR-Net model reduces the forecasting error of NP for all five countries, on average, by 49.21% and 46.07% for short-and-long-term, respectively. The visualizations confirm that forecasting curves are closer to the actual cases but significantly different from Prophet. Hence, it can develop a real-time decision-making system for highly infectious diseases.


Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/epidemiologia , Sistemas Computacionais , Instalações de Saúde , Índia/epidemiologia
4.
Sci Rep ; 13(1): 19598, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950041

RESUMO

Thyroid cancer is a life-threatening condition that arises from the cells of the thyroid gland located in the neck's frontal region just below the adam's apple. While it is not as prevalent as other types of cancer, it ranks prominently among the commonly observed cancers affecting the endocrine system. Machine learning has emerged as a valuable medical diagnostics tool specifically for detecting thyroid abnormalities. Feature selection is of vital importance in the field of machine learning as it serves to decrease the data dimensionality and concentrate on the most pertinent features. This process improves model performance, reduces training time, and enhances interpretability. This study examined binary variants of FOX-optimization algorithms for feature selection. The study employed eight transfer functions (S and V shape) to convert the FOX-optimization algorithms into their binary versions. The vision transformer-based pre-trained models (DeiT and Swin Transformer) are used for feature extraction. The extracted features are transformed using locally linear embedding, and binary FOX-optimization algorithms are applied for feature selection in conjunction with the Naïve Bayes classifier. The study utilized two datasets (ultrasound and histopathological) related to thyroid cancer images. The benchmarking is performed using the half-quadratic theory-based ensemble ranking technique. Two TOPSIS-based methods (H-TOPSIS and A-TOPSIS) are employed for initial model ranking, followed by an ensemble technique for final ranking. The problem is treated as multi-objective optimization task with accuracy, F2-score, AUC-ROC and feature space size as optimization goals. The binary FOX-optimization algorithm based on the [Formula: see text] transfer function achieved superior performance compared to other variants using both datasets as well as feature extraction techniques. The proposed framework comprised a Swin transformer to extract features, a Fox optimization algorithm with a V1 transfer function for feature selection, and a Naïve Bayes classifier and obtained the best performance for both datasets. The best model achieved an accuracy of 94.75%, an AUC-ROC value of 0.9848, an F2-Score of 0.9365, an inference time of 0.0353 seconds, and selected 5 features for the ultrasound dataset. For the histopathological dataset, the diagnosis model achieved an overall accuracy of 89.71%, an AUC-ROC score of 0.9329, an F2-Score of 0.8760, an inference time of 0.05141 seconds, and selected 12 features. The proposed model achieved results comparable to existing research with small features space.


Assuntos
Algoritmos , Neoplasias da Glândula Tireoide , Humanos , Teorema de Bayes , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Aprendizado de Máquina
5.
Res Sq ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37886464

RESUMO

Accurate diagnosis of Parkinson's disease (PD) at an early stage is challenging for clinicians as its progression is very slow. Currently many machine learning and deep learning approaches are used for detection of PD and they are popular too. This study proposes four deep learning models and a hybrid model for the early detection of PD. Further to improve the performance of the models, grey wolf optimization (GWO) is used to automatically fine-tune the hyperparameters of the models. The simulation study is carried out using two standard datasets, T1,T2-weighted and SPECT DaTscan. The metaherustic enhanced deep learning models used are GWO-VGG16, GWO-DenseNet, GWO-DenseNet + LSTM, GWO-InceptionV3 and GWO-VGG16 + InceptionV3. Simulation results demonstrated that all the models perform well and obtained near above 99% of accuracy. The AUC-ROC score of 99.99 is achieved by the GWO-VGG16 + InceptionV3 and GWO-DenseNet models for T1, T2-weighted dataset. Similarly, the GWO-DenseNet, GWO-InceptionV3 and GWO-VGG16 + InceptionV3 models result an AUC-ROC score of 100 for SPECT DaTscan dataset.

6.
J Imaging ; 9(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37754937

RESUMO

Computer-assisted diagnostic systems have been developed to aid doctors in diagnosing thyroid-related abnormalities. The aim of this research is to improve the diagnosis accuracy of thyroid abnormality detection models that can be utilized to alleviate undue pressure on healthcare professionals. In this research, we proposed deep learning, metaheuristics, and a MCDM algorithms-based framework to detect thyroid-related abnormalities from ultrasound and histopathological images. The proposed method uses three recently developed deep learning techniques (DeiT, Swin Transformer, and Mixer-MLP) to extract features from the thyroid image datasets. The feature extraction techniques are based on the Image Transformer and MLP models. There is a large number of redundant features that can overfit the classifiers and reduce the generalization capabilities of the classifiers. In order to avoid the overfitting problem, six feature transformation techniques (PCA, TSVD, FastICA, ISOMAP, LLE, and UMP) are analyzed to reduce the dimensionality of the data. There are five different classifiers (LR, NB, SVC, KNN, and RF) evaluated using the 5-fold stratified cross-validation technique on the transformed dataset. Both datasets exhibit large class imbalances and hence, the stratified cross-validation technique is used to evaluate the performance. The MEREC-TOPSIS MCDM technique is used for ranking the evaluated models at different analysis stages. In the first stage, the best feature extraction and classification techniques are chosen, whereas, in the second stage, the best dimensionality reduction method is evaluated in wrapper feature selection mode. Two best-ranked models are further selected for the weighted average ensemble learning and features selection using the recently proposed meta-heuristics FOX-optimization algorithm. The PCA+FOX optimization-based feature selection + random forest model achieved the highest TOPSIS score and performed exceptionally well with an accuracy of 99.13%, F2-score of 98.82%, and AUC-ROC score of 99.13% on the ultrasound dataset. Similarly, the model achieved an accuracy score of 90.65%, an F2-score of 92.01%, and an AUC-ROC score of 95.48% on the histopathological dataset. This study exploits the combination novelty of different algorithms in order to improve the thyroid cancer diagnosis capabilities. This proposed framework outperforms the current state-of-the-art diagnostic methods for thyroid-related abnormalities in ultrasound and histopathological datasets and can significantly aid medical professionals by reducing the excessive burden on the medical fraternity.

7.
SN Comput Sci ; 3(6): 437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965953

RESUMO

Epilepsy is the second most common neurological disease after Alzheimer. It is a disorder of the brain which results in recurrent seizures. Though the epilepsy in general is considered as a serious disorder, its effects in children are rather dangerous. It is mainly because it reasons a slower rate of development and a failure to improve certain skills among such children. Seizures are the most common symptom of epilepsy. As a regular medical procedure, the specialists record brain activity using an electroencephalogram (EEG) to observe epileptic seizures. The detection of these seizures is performed by specialists, but the results might not be accurate and depend on the specialist's experience; therefore, automated detection of epileptic pediatric seizures might be an optimal solution. In this regard, several techniques have been investigated in the literature. This research aims to review the approaches to pediatric epilepsy seizures' identification especially those based on machine learning, in addition to the techniques applied on the CHB-MIT scalp EEG database of epileptic pediatric signals.

8.
Pattern Recognit Lett ; 151: 69-75, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34413555

RESUMO

Covid-19 disease caused by novel coronavirus (SARS-CoV-2) is a highly contagious epidemic that originated in Wuhan, Hubei Province of China in late December 2019. World Health Organization (WHO) declared Covid-19 as a pandemic on 12th March 2020. Researchers and policy makers are designing strategies to control the pandemic in order to minimize its impact on human health and economy round the clock. The SARS-CoV-2 virus transmits mostly through respiratory droplets and through contaminated surfacesin human body.Securing an appropriate level of safety during the pandemic situation is a highly problematic issue which resulted from the transportation sector which has been hit hard by COVID-19. This paper focuses on developing an intelligent computing model for forecasting the outbreak of COVID-19. The Facebook Prophet model predicts 90 days future values including the peak date of the confirmed cases of COVID-19 for six worst hit countries of the world including India and six high incidence states of India. The model also identifies five significant changepoints in the growth curve of confirmed cases of India which indicate the impact of the interventions imposed by Government of India on the growth rate of the infection. The goodness-of-fit of the model measures 85% MAPE for all six countries and all six states of India. The above computational analysis may be able to throw some light on planning and management of healthcare system and infrastructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA