Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687282

RESUMO

The cytochrome P450 (CYP450) gene family plays a critical role in plant growth and developmental processes, nutrition, and detoxification of xenobiotics in plants. In the present research, a comprehensive set of 105 OsCYP71 family genes was pinpointed within the genome of indica rice. These genes were categorized into twelve distinct subfamilies, where members within the same subgroup exhibited comparable gene structures and conserved motifs. In addition, 105 OsCYP71 genes were distributed across 11 chromosomes, and 36 pairs of OsCYP71 involved in gene duplication events. Within the promoter region of OsCYP71, there exists an extensive array of cis-elements that are associated with light responsiveness, hormonal regulation, and stress-related signaling. Further, transcriptome profiling revealed that a majority of the genes exhibited responsiveness to hormones and were activated across diverse tissues and developmental stages in rice. The OsCYP71P6 gene is involved in insect resistance, senescence, and yield-related traits in rice. Hence, understanding the association between OsCYP71P6 genetic variants and yield-related traits in rice varieties could provide novel insights for rice improvement. Through the utilization of linear regression models, a total of eight promoters were identified, and a specific gene variant (Ser33Leu) within OsCYP71P6 was found to be linked to spikelet fertility. Additionally, different alleles of the OsCYP71P6 gene identified through in/dels polymorphism in 131 rice varieties were validated for their allelic effects on yield-related traits. Furthermore, the single-plant yield, spikelet number, panicle length, panicle weight, and unfilled grain per panicle for the OsCYP71P6-1 promoter insertion variant were found to contribute 20.19%, 13.65%, 5.637%, 8.79%, and 36.86% more than the deletion variant, respectively. These findings establish a robust groundwork for delving deeper into the functions of OsCYP71-family genes across a range of biological processes. Moreover, these findings provide evidence that allelic variation in the promoter and amino acid substitution of Ser33Leu in the OsCYP71P6 gene could potentially impact traits related to rice yield. Therefore, the identified promoter variants in the OsCYP71P6 gene could be harnessed to amplify rice yields.

2.
Biomolecules ; 13(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830568

RESUMO

Ranidhan is a popular late-maturing rice variety of Odisha state, India. The farmers of the state suffer heavy loss in years with flash floods as the variety is sensitive to submergence. Bacterial blight (BB) disease is a major yield-limiting factor, and the variety is susceptible to the disease. BB resistance genes Xa21, xa13, and xa5, along with the Sub1 QTL, for submergence stress tolerance were transferred into the variety using marker-assisted backcross breeding approach. Foreground selection using direct and closely linked markers detected the progenies carrying all four target genes in the BC1F1, BC2F1, and BC3F1 generations, and the positive progenies carrying these genes with maximum similarity to the recipient parent, Ranidhan, were backcrossed into each segregating generation. Foreground selection in the BC1F1 generation progenies detected all target genes in 11 progenies. The progeny carrying all target genes and similar to the recipient parent in terms of phenotype was backcrossed, and a total of 321 BC2F1 seeds were produced. Ten progenies carried all target genes/QTL in the BC2F1 generation. Screening of the BC3F1 progenies using markers detected 12 plants carrying the target genes. A total of 1270 BC3F2 seeds were obtained from the best BC3F1 progeny. Foreground selection in the BC3F2 progenies detected four plants carrying the target genes in the homozygous condition. The bioassay of the pyramided lines conferred very high levels of resistance to the predominant isolates of bacterial blight pathogen. These BB pyramided lines were submergence-tolerant and similar to Ranidhan in 13 agro-morphologic and grain quality traits; hence, they are likely to be adopted by farmers.


Assuntos
Infecções Bacterianas , Oryza , Marcadores Genéticos , Oryza/genética , Resistência à Doença/genética , Embaralhamento de DNA , Melhoramento Vegetal
3.
Physiol Mol Biol Plants ; 27(3): 543-562, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33854283

RESUMO

Rice is an important source of calorie for the growing world population. Its productivity, however is affected by climatic adversities, pest attacks, diseases of bacterial, viral and fungal origin and many other threats. Developing cultivars that are high yielding and stress resilient seems a better solution to tackle global food security issues. This study investigates the potential resistance of 24 rice cultivars against Xanthomonas oryzae pv. Oryzae (Xoo) infection that causes bacterial leaf blight disease and submergence stress. Bacterial leaf blight (BLB) resistance genes (Xa4, xa5, xa13, Xa21, Xa38) and submergence tolerance (Sub1) gene specific markers were used to determine the allelic status of genotypes. The results displayed presence of Xa4 resistance allele (78.95%), xa5 (15.79%) but xa13 and Sub1 tolerance allele were not found in any genotype. However, a new allele for Xa21 (84.21%) and Xa38 (10.52%) were identified in several genotypes. Phenotypic screening for both stress conditions was done to record the cultivars response. None of the genotypes showed resistance against Xoo, although varieties viz., Tapaswini and Konark showed moderate susceptibility. Likewise, survival percentage of genotypes under submergence stress varied from 0 to 100%. Tolerant checks FR13A (100%) and Swarna Sub1 (97.78%) exhibited high survival rate, whereas among genotypes, Gayatri (57.78%) recorded high survivability even though it lacked Sub1 tolerant its genetic background. A total of six trait specific STS and two SSR markers generated an average of 2.38 allele per locus. Polymorphism information content (PIC) value ranged from 0.08 to 0.42 with an average of 0.20. Structure analysis categorized 24 genotypes into two sub-populations, which was in correspondence with Nei's genetic distance-based NJ tree and principal co-ordinate analysis (PCoA). Swarna Sub1 could be differentiated clearly from BLB resistant check, IRBB60 and other 22 genotypes without having Sub1 gene. Analysis of molecular variance (AMOVA) revealed more genetic variation within population than among population. Principal component analysis (PCA) showed that 9 morphological traits collectively explained 76.126% of total variation among all the genotypes studied. The information from this study would be useful in future breeding programs for pyramiding trait specific genes into high yielding cultivars that fall behind with respect to stress resilience. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00951-1.

4.
Sci Rep ; 11(1): 5573, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692374

RESUMO

Control of stage specific spike in ethylene production at anthesis has been a vauable route to potentially enhance genetic ceiling for grain filling of rice spikelet. A number of genes controlling ethylene homeostasis and starch synthesis have been identified so long, but lack of credible information on master modulation of gene expression by miRNAs and their target genes associated with hormonal dynamics obfuscate mechanisms controlling genotype difference in quantum of grain filling. The confusion accounts for consequent shrinkage of options for yield manipulation. In a two by two factorial design, miRNA regulation of spikelet specific grain development in low against high sterile recombinant inbred lines of rice Oryza sativa L. namely CR 3856-62-11-3-1-1-1-1-1-1 (SR 157) and CR 3856-63-1-1-1-1-1-1-1 (SR 159) respectively, and inferior verses superior spikelets were compared during first 10 days after anthesis. Grain filling was poorer in SR159 than SR157 and inferior spikelets in the former were most vulnerable. Between the cultivars, overall expression of unique miRNAs with targets on ethylene pathway genes was higher in SR159 than SR157 and the situation was opposite for auxin pathway genes. Precision analysis in psTarget server database identified up-regulation of MIR2877 and MIR530-5p having Os11t0141000-02 and Os07t0239400-01 (PP2A regulatory subunit-like protein and ethylene-responsive small GTP-binding proteins) and MIR396h having Os01t0643300-02 (an auxin efflux carrier protein) and Os01t0643300-01 (a PIN1-like auxin transport protein), as targets with highest probability at anthesis and 5 days after anthesis respectively, in the inferior spikelet and the fold change values of DGE matched with pattern of gene expression (relative transcript level) in the qRT-PCR studies conducted for relevant miRNAs and protein factors for ethylene and auxin signalling. In conclusion, epigenetic regulation of both auxin and ethylene homeostasis control grain filling of rice spikelet was established, but evidences were more robust for the latter.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , MicroRNAs , Oryza , RNA de Plantas , Amido , Transcriptoma , Endosperma/genética , Endosperma/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Oryza/genética , Oryza/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética , Amido/biossíntese , Amido/genética
5.
Plant Physiol Biochem ; 159: 244-256, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388659

RESUMO

Development of rice cultivars bearing numerous spikelets by breeding approach to increase the yearly production of rice to approximately 800 million metric tons to feed the ever increasing population of the world accompanies poor grain filling in the inferior spikelets preventing achievement of the yield potential. As the initial stages of caryopses development are of much importance for grain filling, spatio-temporal expressions of the miRNAs were studied during these periods in the spikelets of a compact-panicle rice cultivar, Oryza sativa cv. Mahalaxmi, bearing numerous spikelets per panicle to understand the reason of poor grain filling at the level of the initial biochemical events. Differential expression of several known miRNAs between the superior and inferior spikelets suggested great difference in metabolism related to grain filling in the spikelets based on their spatial location on compact panicle. Expressions of five known and four novel miRNAs were validated by Northern. Their targets included the enzymes directly involved in starch biosynthesis like sucrose synthase, starch synthase and pullulanase, besides others. Spatio-temporal expression studies of these miRNAs in the spikelets of Mahalaxmi revealed a pattern of mostly a greater expression in the inferior spikelets compared with the superior ones concomitant with an inverse expression of the target genes, which was not observed in the lax-panicle cultivar Upahar. The study thus revealed that the grain filling in rice is greatly regulated by miRNAs, and these miRNAs or their target genes could be considered for biotechnological interventions for improving grain filling in the rice cultivars of interest.


Assuntos
Grão Comestível , Regulação da Expressão Gênica de Plantas , MicroRNAs , Oryza , Proteínas de Plantas , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
PLoS One ; 15(7): e0227785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673318

RESUMO

A panel of 60 genotypes comprising New Plant Types (NPTs) along with indica, tropical and temperate japonica genotypes was phenotypically evaluated for four seasons in irrigated situation for grain yield per se and component traits. Twenty NPT genotypes were found promising with an average grain yield varying from 5.45 to 8.8 t/ha. A total of 85 SSR markers were used in the study to identify QTLs associated with grain yield per se and related traits. Sixty-six (77.65%) markers were found to be polymorphic. The PIC values varied from 0.516 to 0.92 with an average of 0.704. A moderate level of genetic diversity (0.39) was detected among genotypes. Variation to the tune of 8% within genotypes, 68% among the genotypes within the population and 24% among the populations were observed (AMOVA). This information may help in identification of potential parents for development of transgressive segregants with very high yield. The association analysis using GLM and MLM models led to the identification of 30 and 10 SSR markers associated with 70 and 16 QTLs, respectively. Thirty novel QTLs linked with 16 SSRs were identified to be associated with eleven traits, namely tiller number (qTL-6.1, qTL-11.1, qTL-4.1), panicle length (qPL-1.1, qPL-5.1, qPL-7.1, qPL-8.1), flag leaf length (qFLL-8.1, qFLL-9.1), flag leaf width (qFLW-6.2, qFLW-5.1, qFLW-8.1, qFLW-7.1), total no. of grains (qTG-2.2, qTG-a7.1), thousand-grain weight (qTGW-a1.1, qTGW-a9.2, qTGW-5.1, qTGW-8.1), fertile grains (qFG-7.1), seed length-breadth ratio (qSlb-3.1), plant height (qPHT-6.1, qPHT-9.1), days to 50% flowering (qFD-1.1) and grain yield per se (qYLD-5.1, qYLD-6.1a, qYLD-11.1).Some of the SSRs were co-localized with more than two traits. The highest co-localization was identified with RM5709 linked to nine traits, followed by RM297 with five traits. Similarly, RM5575, RM204, RM168, RM112, RM26499 and RM22899 were also recorded to be co-localized with more than one trait and could be rated as important for marker-assisted backcross breeding programs, for pyramiding of these QTLs for important yield traits, to produce new-generation rice for prospective increment in yield potentiality and breaking yield ceiling.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Grão Comestível/genética , Variação Genética , Genótipo , Repetições de Microssatélites/genética , Oryza/fisiologia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Análise de Componente Principal
7.
Genomics ; 112(3): 2647-2657, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32087244

RESUMO

Rice serves as one of the essential staple food for half of the global human population. However, due to rapid human population growth, there is an increase in food demand across the globe. Thus, to lessen the gap between food demand and supply, there is an urgent requirement for grain yield enhancement in various important cereals crops, including rice. In the present study, the authors attempted to characterize haplotypes and single nucleotide polymorphisms associated with Gn1a for high grain number formation in rice plants. Result obtained reveals that high grain number gene sequences are under balancing selection and four high grain number specific missense SNPs decreases the stability of Gn1a. Earlier studies have also suggested that decreases Gn1a expression causes cytokinin accretion in inflorescence meristems, which in turn led to increase in grain yield. Hence, these four SNPs may be utilized for increasing grain yield in rice plants.


Assuntos
Grão Comestível/genética , Oryza/genética , Oxirredutases/genética , Polimorfismo de Nucleotídeo Único , Grão Comestível/crescimento & desenvolvimento , Ontologia Genética , Haplótipos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Alinhamento de Sequência
8.
Amino Acids ; 51(5): 839-853, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900088

RESUMO

Rice serves as the major food for almost half of the world population. Because of its origin in the tropical and subtropical area, rice is more sensitive towards cold stress. Three homologs of DREB1, namely DREB1A, DREB1B and DREB1C are induced Queryduring cold stress and after binding with GCC-box in the promoter region of the target gene, they enhance cold tolerance in rice plants. Though the majority of DREBs bind GCC-box, the degree of activation varies among DREBs. The protein encoded via these three transcription factors contains a common domain, namely AP2/ERF. In silico method was utilised to predict 3D structure of each AP2/ERF domain. The molecular dynamic analysis suggests, under the normal environmental condition, in each AP2/ERF domain, a positive correlation exists between ß-strands and the movement of C-α is constrained. However, during cold stress, when AP2/ERF domain binds with GCC-box present in the promoter region of the target gene, mean pressure of each three AP2/ERF domain gets lowered and final potential energy increases. A positive correlation between ß-strands gets disrupted and C-α experiences random movement suggesting enhanced activity of DREB1A, DREB1B and DREB1C during cold stress and enhancement of cold tolerance in plants. Further, MM/PBSA calculations for protein-DNA affinities reveal that, due to lack of α2 in DREB1C, the binding affinity of GCC-box with AP2/ERF domain of DREB1A > DREB1B > DREB1C. Thus, due to a better binding affinity with GCC-box, DREB1A and DREB1B can be utilised in near future for increasing cold tolerance of rice plant and increasing yield.


Assuntos
Temperatura Baixa , Biologia Computacional/métodos , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Estresse Fisiológico , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Simulação de Dinâmica Molecular , Oryza/genética , Proteínas de Plantas/genética , Homologia de Sequência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...