Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116580, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723513

RESUMO

Colitis-associated cancer (CAC) in inflammatory bowel diseases exhibits more aggressive behavior than sporadic colorectal cancer; however, the molecular mechanisms remain unclear. No definitive preventative agent against CAC is currently established in the clinical setting. We investigated the molecular mechanisms of CAC in the azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model and assessed the antitumor efficacy of erlotinib, a small molecule inhibitor of the epidermal growth factor receptor (EGFR). Erlotinib premixed with AIN-93 G diet at 70 or 140 parts per million (ppm) inhibited tumor multiplicity significantly by 96%, with ∼60% of the treated mice exhibiting zero polyps at 12 weeks. Bulk RNA-sequencing revealed more than a thousand significant gene alterations in the colons of AOM/DSS-treated mice, with KEGG enrichment analysis highlighting 46 signaling pathways in CAC development. Erlotinib altered several signaling pathways and rescued 40 key genes dysregulated in CAC, including those involved in the Hippo and Wnt signaling. These findings suggest that the clinically-used antitumor agent erlotinib might be repurposed for suppression of CAC, and that further studies are warranted on the crosstalk between dysregulated Wnt and EGFR signaling in the corresponding patient population.

2.
Cancers (Basel) ; 16(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38539439

RESUMO

Epigenetic 'reader' proteins, which have evolved to interact with specific chromatin modifications, play pivotal roles in gene regulation. There is growing interest in the alternative splicing mechanisms that affect the functionality of such epigenetic readers in cancer etiology. The current review considers how deregulation of epigenetic processes and alternative splicing events contribute to pathophysiology. An A-Z guide of epigenetic readers is provided, delineating the antagonistic 'yin-yang' roles of full-length versus spliced isoforms, where this is known from the literature. The examples discussed underscore the key contributions of epigenetic readers in transcriptional regulation, early development, and cancer. Clinical implications are considered, offering insights into precision oncology and targeted therapies focused on epigenetic readers that have undergone alternative splicing events during disease pathogenesis. This review underscores the fundamental importance of alternative splicing events in the context of epigenetic readers while emphasizing the critical need for improved understanding of functional diversity, regulatory mechanisms, and future therapeutic potential.

3.
Nutrients ; 16(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337680

RESUMO

Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Neoplasias/genética , Medicina de Precisão , Código das Histonas , Metilação de DNA , Processamento de Proteína Pós-Traducional , Epigênese Genética
4.
NPJ Precis Oncol ; 7(1): 20, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36801948

RESUMO

ACE2 overexpression in colorectal cancer patients might increase susceptibility to SARS-CoV-2 infection. We report that knockdown, forced overexpression, and pharmacologic inhibition in human colon cancer cells targeted ACE2-BRD4 crosstalk to mediate marked changes in DNA damage/repair and apoptosis. In colorectal cancer patients for whom high ACE2 plus high BRD4 expression is predictive of poor survival, pan-BET inhibition would need to consider proviral/antiviral actions of different BET proteins during SARS-CoV-2 infection.

5.
Nutrients ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297001

RESUMO

Epigenetic mechanisms play an important role in the etiology of colorectal cancer (CRC) and other malignancies due, in part, to deregulated bromodomain (BRD) functions. Inhibitors of the bromodomain and extraterminal (BET) family have entered into clinical trials as anticancer agents, and interest has grown in other acetyl 'reader' proteins as therapeutic targets, including non-BET member bromodomain-containing protein 9 (BRD9). We report here that overexpression of BRD9 is associated with poor prognosis in CRC patients, and that siRNA-mediated knockdown of BRD9 decreased cell viability and activated apoptosis in human colon cancer cells, coincident with increased DNA damage. Seeking natural compounds as BRD9 antagonists, molecular docking in silico identified several polyphenols such as Epigallocatechin-3-gallate (EGCG), Equol, Quercetin, and Aspalathin, with favorable binding energies, supported by BROMOscan® (DiscoverX) and isothermal titration calorimetry experiments. Polyphenols mimicked BRD9 knockdown and iBRD9 treatment in reducing colon cancer cell viability, inhibiting colony formation, and enhancing DNA damage and apoptosis. Normal colonic epithelial cells were unaffected, signifying cancer-specific effects. These findings suggest that natural polyphenols recognize and target BRD9 for inhibition, and might serve as useful lead compounds for bromodomain therapeutics in the clinical setting.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Polifenóis/farmacologia , Simulação de Acoplamento Molecular , RNA Interferente Pequeno , Equol , Quercetina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Dano ao DNA
6.
Front Immunol ; 13: 1020902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275703

RESUMO

Background: Previous studies implicated matrix metalloproteinases (MMPs), such as MMP-7, in inflammatory bowel diseases (IBD) by showing increased activity during inflammation of the gut. However, the pathophysiological roles of MMP-7 have not been clearly elucidated. Methods: The expression of MMP-7 was assessed in colonic biopsies of patients with ulcerative colitis (UC), in rodents with experimental colitis, and in cell-based assays with cytokines. Wild-type and MMP-7-null mice treated with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid were used for determining the pro-inflammatory function(s) of MMP-7 in vivo. Results: MMP-7 was highly expressed in patients with UC and in rodents with experimental colitis. IL-1ß, IL-4, IL-13, TNFα, or lipopolysaccharide enhanced MMP-7 expression in human colonic epithelial cells, rat colonic smooth muscle cells, and THP-1-derived macrophages. Active MMP-7 degraded tight junction protein Claudin-7 in epithelial cells, cleaved recombinant Claudin-7 in cell-free system, and increased Caco-2 monolayer permeability. Immunostaining of colon biopsies revealed up-regulation of MMP-7 and reduction of Claudin-7 in UC patients. Compared to wild-type mice, Mmp7 -/- mice had significantly less inflammation in the colon upon DSS insult. DSS-induced alterations in junction proteins were mitigated in Mmp7 -/- mice, suggesting that MMP-7 disrupts the intestinal barrier. MMP-7 antibody significantly ameliorated colonic inflammation and Claudin-7 reduction in 2 different rodent models of colitis. Summary: MMP-7 impairs intestinal epithelial barrier by cleavage of Claudin-7, and thus aggravating inflammation. These studies uncovered Claudin-7 as a novel substrate of MMP-7 in the intestinal epithelium and reinforced MMP-7 as a potential therapeutic target for IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Ratos , Animais , Proteínas de Junções Íntimas/metabolismo , Sulfato de Dextrana/toxicidade , Metaloproteinase 7 da Matriz/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-13/metabolismo , Junções Íntimas/metabolismo , Células CACO-2 , Lipopolissacarídeos/efeitos adversos , Interleucina-4/metabolismo , Colite/patologia , Doenças Inflamatórias Intestinais/metabolismo , Colite Ulcerativa/patologia , Inflamação/metabolismo , Camundongos Knockout , Citocinas/metabolismo , Claudinas/genética , Claudinas/metabolismo , Trinitrobenzenos/metabolismo , Trinitrobenzenos/uso terapêutico , Ácidos Sulfônicos/efeitos adversos , Ácidos Sulfônicos/metabolismo
7.
Cells ; 11(3)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159382

RESUMO

There is growing interest in the crosstalk between the gut microbiome, host metabolomic features, and disease pathogenesis. The current investigation compared long-term (26 week) and acute (3 day) dietary spinach intake in a genetic model of colorectal cancer. Metabolomic analyses in the polyposis in rat colon (Pirc) model and in wild-type animals corroborated key contributions to anticancer outcomes by spinach-derived linoleate bioactives and a butanoate metabolite linked to increased α-diversity of the gut microbiome. Combining linoleate and butanoate metabolites in human colon cancer cells revealed enhanced apoptosis and reduced cell viability, paralleling the apoptosis induction in colon tumors from rats given long-term spinach treatment. Mechanistic studies in cell-based assays and in vivo implicated the linoleate and butanoate metabolites in targeting histone deacetylase (HDAC) activity and the interferon-γ (IFN-γ) signaling axis. Clinical translation of these findings to at-risk patients might provide valuable quality-of-life benefits by delaying surgical interventions and drug therapies with adverse side effects.


Assuntos
Ácido Butírico , Neoplasias do Colo , Dieta , Ácido Linoleico , Spinacia oleracea , Animais , Neoplasias do Colo/patologia , Humanos , Interferon gama/uso terapêutico , Metabolômica , Ratos
8.
Gut Microbes ; 13(1): 1972756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34494932

RESUMO

Complex interrelationships govern the dynamic interactions between gut microbes, the host, and exogenous drivers of disease outcome. A multi-omics approach to cancer prevention by spinach (SPI) was pursued for the first time in the polyposis in rat colon (Pirc) model. SPI fed for 26 weeks (10% w/w, freeze-dried in the diet) exhibited significant antitumor efficacy and, in the Apc-mutant genetic background, ß-catenin remained highly overexpressed in adenomatous polyps. However, in both wild type and Apc-mutant rats, increased gut microbiome diversity after SPI consumption coincided with reversal of taxonomic composition. Metagenomic prediction implicated linoleate and butanoate metabolism, tricarboxylic acid cycle, and pathways in cancer, which was supported by transcriptomic and metabolomic analyses. Thus, tumor suppression by SPI involved marked reshaping of the gut microbiome along with changes in host RNA-miRNA networks. When colon polyps were compared with matched normal-looking tissues via metabolomics, anticancer outcomes were linked to SPI-derived linoleate bioactives with known anti-inflammatory/ proapoptotic mechanisms, as well as N-aceto-2-hydroxybutanoate, consistent with altered butanoate metabolism stemming from increased α-diversity of the gut microbiome. In colon tumors from SPI-fed rats, L-glutamate and N-acetylneuraminate also were reduced, implicating altered mitochondrial energetics and cell surface glycans involved in oncogenic signaling networks and immune evasion. In conclusion, a multi-omics approach to cancer prevention by SPI provided mechanistic support for linoleate and butanoate metabolism, as well as tumor-associated changes in L-glutamate and N-acetylneuraminate. Additional factors, such as the fiber content, also warrant further investigation with a view to delaying colectomy and drug intervention in at-risk patients.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Pólipos Adenomatosos/metabolismo , Neoplasias do Colo/dietoterapia , Microbioma Gastrointestinal/fisiologia , Spinacia oleracea , Animais , Ácido Butírico/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Neoplasias do Colo/patologia , Dieta , Ácido Glutâmico/metabolismo , Ácido Linoleico/metabolismo , Masculino , Mitocôndrias/metabolismo , Ácidos Neuramínicos/metabolismo , Ratos , Ratos Endogâmicos F344 , Verduras
9.
J Cancer Prev ; 26(1): 71-82, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33842408

RESUMO

The Division of Cancer Prevention of the National Cancer Institute (NCI) and the Office of Disease Prevention of the National Institutes of Health co-sponsored the Translational Advances in Cancer Prevention Agent Development Meeting on August 27 to 28, 2020. The goals of this meeting were to foster the exchange of ideas and stimulate new collaborative interactions among leading cancer prevention researchers from basic and clinical research; highlight new and emerging trends in immunoprevention and chemoprevention as well as new information from clinical trials; and provide information to the extramural research community on the significant resources available from the NCI to promote prevention agent development and rapid translation to clinical trials. The meeting included two plenary talks and five sessions covering the range from pre-clinical studies with chemo/immunopreventive agents to ongoing cancer prevention clinical trials. In addition, two NCI informational sessions describing contract resources for the preclinical agent development and cooperative grants for the Cancer Prevention Clinical Trials Network were also presented.

10.
Cancers (Basel) ; 13(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809839

RESUMO

There is growing evidence that DNA repair factors have clinical value for cancer treatment. Nucleotide excision repair (NER) proteins, including excision repair cross-complementation group 2 (ERCC2), play a critical role in maintaining genome integrity. Here, we examined ERCC2 expression following epigenetic combination drug treatment. Attention was drawn to ERCC2 for three reasons. First, from online databases, colorectal cancer (CRC) patients exhibited significantly reduced survival when ERCC2 was overexpressed in colon tumors. Second, ERCC2 was the most highly downregulated RNA transcript in human colon cancer cells, plus Ercc2 in rat tumors, after treatment with the histone deacetylase 3 (HDAC3) inhibitor sulforaphane (SFN) plus JQ1, which is an inhibitor of the bromodomain and extraterminal domain (BET) family. Third, as reported here, RNA-sequencing of polyposis in rat colon (Pirc) polyps following treatment of rats with JQ1 plus 6-methylsulfinylhexyl isothiocyanate (6-SFN) identified Ercc2 as the most highly downregulated gene. The current work also defined promising second-generation epigenetic drug combinations with enhanced synergy and efficacy, especially in metastasis-lineage colon cancer cells cultured as 3D spheroids and xenografts. This investigation adds to the growing interest in combination approaches that target epigenetic 'readers', 'writers', and 'erasers' that are deregulated in cancer and other pathologies, providing new avenues for precision oncology and cancer interception.

11.
Genes Environ ; 43(1): 8, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676582

RESUMO

Before 'cancer interception' was first advocated, 'interceptor molecules' had been conceived as a sub-category of preventive agents that interfered with the earliest initiation steps in carcinogenesis. Three decades ago, a seminal review cataloged over fifty synthetic agents and natural products that were known or putative interceptor molecules. Chlorophylls and their derivatives garnered much interest based on the potent antimutagenic activity in the Salmonella assay, and the subsequent mechanistic work that provided proof-of-concept for direct molecular complexes with planar aromatic carcinogens. As the 'interceptor molecule' hypothesis evolved, mechanistic experiments and preclinical studies supported the view that chlorophylls can interact with environmental heterocyclic amines, aflatoxins, and polycyclic aromatic hydrocarbons to limit their uptake and bioavailability in vivo. Support also came from human translational studies involving ultralow dose detection in healthy volunteers, as well as intervention in at-risk subjects. Antimutagenic and antigenotoxic effects of natural and synthetic chlorophylls against small alkylating agents also highlighted the fact that non-interceptor mechanisms existed. This gave impetus to investigations broadly related to free radical scavenging, anti-inflammatory effects, immune modulation and photodynamic therapy. Therapeutic aspects of chlorophylls also were investigated, with evidence for cell cycle arrest and apoptosis in human cancer cells. As the science has evolved, new mechanistic leads continue to support the use and development of chlorophylls and their porphyrin derivatives for cancer interception, beyond the initial interest as interceptor molecules.

12.
J Cancer Prev ; 26(4): 309-317, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35047458

RESUMO

The National Cancer Institute (NCI) Division of Cancer Prevention (DCP) convened the "Translational Advances in Cancer Prevention Agent Development (TACPAD) Workshop on Immunomodulatory Agents" as a virtual 2-day workshop on September 13 to 14, 2021. The main goals of this workshop were to foster the exchange of ideas and potentially new collaborative interactions among leading cancer immunoprevention researchers from basic and clinical research and highlight new and emerging trends in immunoprevention. The workshop included an overview of the mechanistic classes of immunomodulatory agents and three sessions covering the gamut from preclinical to clinical studies. The workshop convened individuals working in immunology and cancer prevention to discuss trends in discovery and development of immunomodulatory agents individually and in combination with other chemopreventive agents or vaccines.

13.
Cancer Prev Res (Phila) ; 14(3): 325-336, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33277315

RESUMO

A clinical trial in patients with familial adenomatous polyposis (FAP) demonstrated that sulindac plus erlotinib (SUL+ERL) had good efficacy in the duodenum and colon, but toxicity issues raised concerns for long-term prevention. We performed a biomarker study in the polyposis in rat colon (Pirc) model, observing phosphorylated Erk inhibition in colon polyps for up to 10 days after discontinuing ERL+SUL administration. In a follow-up study lasting 16 weeks, significant reduction of colon and small intestine (SI) tumor burden was detected, especially in rats given 250 ppm SUL in the diet plus once-a-week intragastric dosing of ERL at 21 or 42 mg/kg body weight (BW). A long-term study further demonstrated antitumor efficacy in the colon and SI at 52 weeks, when 250 ppm SUL was combined with once-a-week intragastric administration of ERL at 10, 21, or 42 mg/kg BW. Tumor-associated matrix metalloproteinase-7 (Mmp7), tumor necrosis factor (Tnf), and early growth response 1 (Egr1) were decreased at 16 weeks by ERL+SUL, and this was sustained in the long-term study for Mmp7 and Tnf. Based on the collective results, the optimal dose combination of ERL 10 mg/kg BW plus 250 ppm SUL lacked toxicity, inhibited molecular biomarkers, and exhibited effective antitumor activity. We conclude that switching from continuous to once-per-week ERL, given at one-quarter of the current therapeutic dose, will exert good efficacy with standard-of-care SUL against adenomatous polyps in the colon and SI, with clinical relevance for patients with FAP before or after colectomy. PREVENTION RELEVANCE: This investigation concludes that switching from continuous to once-per-week erlotinib, given at one-quarter of the current therapeutic dose, will exert good efficacy with standard-of-care sulindac against adenomatous polyps in the colon and small intestine, with clinical relevance for patients with FAP before or after colectomy.


Assuntos
Polipose Adenomatosa do Colo/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/prevenção & controle , Pólipos do Colo/prevenção & controle , Genes APC , Neoplasias Intestinais/prevenção & controle , Mutação , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/normas , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Pólipos do Colo/genética , Pólipos do Colo/metabolismo , Pólipos do Colo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Cloridrato de Erlotinib/administração & dosagem , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Masculino , Ratos , Sulindaco/administração & dosagem
14.
Mutat Res Rev Mutat Res ; 786: 108337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33339575

RESUMO

Takashi Sugimura, M.D., Honorary President of the National Cancer Center in Tokyo, and former President of The Japan Academy, is regarded by many as a pre-eminent contributor to the field of environmental genotoxicology. His pioneering spirit led to many key discoveries over a long and distinguished scientific career, including the first preclinical models for gastric cancer, identification of novel mutagens from cooked food, and the development of fundamental concepts in environmental chemical carcinogenesis. With his passing on September 6, 2020, many will reflect on the loss of an astute and engaging "Scientific Giant," who with warmth and good humor maintained lasting friendships both at home and abroad, beyond his many important scientific contributions.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/história , Metilnitronitrosoguanidina/história , Mutagênicos/história , Neoplasias Gástricas/história , Animais , Borboletas , Carcinógenos Ambientais/isolamento & purificação , História do Século XX , História do Século XXI , Humanos , Metilnitronitrosoguanidina/isolamento & purificação , Testes de Mutagenicidade/história , Mutagênicos/isolamento & purificação
15.
Sci Adv ; 6(42)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33067228

RESUMO

Medulloblastoma (MB), the most common form of pediatric brain malignancy, has a low frequency of oncogenic mutations but pronouncedly abnormal DNA methylation changes. Epigenetic analysis of circulating cell-free tumor DNA (ctDNA) by liquid biopsy offers an approach for real-time monitoring of tumor status without tumor dissection. In this study, we identified 6598 differentially methylated CpGs in both MB tumors and the ctDNA isolated from matched cerebrospinal fluid (CSF) compared with normal cerebellum, which could be used to detect MB tumor occurrence and determine its subtype. Furthermore, DNA methylation changes in serial CSF samples could be used to monitor the treatment response and tumor recurrence. Integrating our data with large public datasets, we identified reliable MB DNA methylation signatures in ctDNA that have potential diagnostic and prognostic values. Our study sets the stage for exploiting epigenetic markers in CSF to improve the clinical management of patients with MB.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Cerebelares , DNA Tumoral Circulante , Meduloblastoma , Ácidos Nucleicos Livres/genética , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/genética , Criança , DNA Tumoral Circulante/líquido cefalorraquidiano , DNA Tumoral Circulante/genética , Metilação de DNA , Humanos , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Mutação
16.
Antioxidants (Basel) ; 9(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32938017

RESUMO

Epigenetics has provided a new dimension to our understanding of nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (human NRF2/KEAP1 and murine Nrf2/Keap1) signaling. Unlike the genetic changes affecting DNA sequence, the reversible nature of epigenetic alterations provides an attractive avenue for cancer interception. Thus, targeting epigenetic mechanisms in the corresponding signaling networks represents an enticing strategy for therapeutic intervention with dietary phytochemicals acting at transcriptional, post-transcriptional, and post-translational levels. This regulation involves the interplay of histone modifications and DNA methylation states in the human NFE2L2/KEAP1 and murine Nfe2l2/Keap1 genes, acetylation of lysine residues in NRF2 and Nrf2, interaction with bromodomain and extraterminal domain (BET) acetyl "reader" proteins, and non-coding RNAs such as microRNA (miRNA) and long non-coding RNA (lncRNA). Phytochemicals documented to modulate NRF2 signaling act by reversing hypermethylated states in the CpG islands of NFE2L2 or Nfe2l2, via the inhibition of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), through the induction of ten-eleven translocation (TET) enzymes, or by inducing miRNA to target the 3'-UTR of the corresponding mRNA transcripts. To date, fewer than twenty phytochemicals have been reported as NRF2 epigenetic modifiers, including curcumin, sulforaphane, resveratrol, reserpine, and ursolic acid. This opens avenues for exploring additional dietary phytochemicals that regulate the human epigenome, and the potential for novel strategies to target NRF2 signaling with a view to beneficial interception of cancer and other chronic diseases.

17.
BMC Cancer ; 20(1): 871, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912193

RESUMO

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin and sulindac are effective for colorectal cancer prevention in humans and some animal models, but concerns over gastro-intestinal (GI) ulceration and bleeding limit their potential for chemopreventive use in broader populations. Recently, the combination of aspirin with a phospholipid, packaged as PL-ASA, was shown to reduce GI toxicity in a small clinical trial. However, these studies were done for relatively short periods of time. Since prolonged, regular use is needed for chemopreventive benefit, it is important to know whether GI safety is maintained over longer use periods and whether cancer prevention efficacy is preserved when an NSAID is combined with a phospholipid. METHODS: As a first step to answering these questions, we treated seven to eight-week-old, male and female C57B/6 Apcmin/+ mice with the NSAID sulindac, with and without phosphatidylcholine (PC) for 3-weeks. At the end of the treatment period, we evaluated polyp burden, gastric toxicity, urinary prostaglandins (as a marker of sulindac target engagement), and blood chemistries. RESULTS: Both sulindac and sulindac-PC treatments resulted in significantly reduced polyp burden, and decreased urinary prostaglandins, but sulindac-PC treatment also resulted in the reduction of gastric lesions compared to sulindac alone. CONCLUSIONS: Together these data provide pre-clinical support for combining NSAIDs with a phospholipid, such as phosphatidylcholine to reduce GI toxicity while maintaining chemopreventive efficacy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Pólipos do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Sulindaco/farmacologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Pólipos do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Fosfolipídeos/farmacologia
18.
Cancer Lett ; 490: 154-164, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717274

RESUMO

Diverse stimuli trigger Nrf2 signaling, which in turn transcriptionally regulates an array of downstream targets, providing for multiple layers of control. While Nrf2 activity largely is governed by posttranslational modification of critical thiol residues in the protein partner and redox sensor Keap1, fine-tuning is provided by additional mechanisms - including epigenetic regulation. Herein, we review the emerging significance of long non-coding RNAs (lncRNA) as downstream targets and upstream regulators of the Nrf2 signaling pathway. Among the ~16000 lncRNAs in GENCODE, some have been validated as transcriptionally regulated by Nrf2 (e.g., LUCAT1, NMRAL2P, ODRUL, ROR and TUG1), and others have been identified as upstream regulators of Nrf2 expression (e.g., HOTAIR, MALAT1, MEG1, NRAL and UCA1). Bioinformatic analyses of annotated human lncRNAs identified putative Nrf2 binding sites in the promoter regions of 13,285 lncRNAs. Further investigation is warranted to validate the many novel lncRNAs as bona fide Nrf2-regulated targets, and their roles in Nrf2 signaling. Nrf2 is considered a promising therapeutic candidate for cancer and other chronic diseases; thus, targeting the associated lncRNAs might provide for a more refined fine-tuning of the system, depending on cellular and pathophysiological context.


Assuntos
Regulação da Expressão Gênica/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais/fisiologia , Humanos
19.
J Immunol ; 204(4): 980-989, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31889022

RESUMO

Altered intestinal epithelial integrity is an important susceptibility trait in inflammatory bowel disease (IBD), and early life stressors are reported to contribute to this disease susceptibility in adulthood. To identify disease mechanisms associated with early-life trauma that exacerbate IBD in adulthood, we used a "double-hit" neonatal inflammation (NI) and adult inflammation (AI) model that exhibits more severe mucosal injury in the colon later in life. In this study, we explore the underlying mechanisms of this aggravated injury. In rats exposed to both NI and AI, we found sustained increases in colonic permeability accompanied by significantly attenuated expression of the epithelial junction protein E-cadherin. Quantitative RT-PCR revealed a decreased Cdh1 (gene of E-cadherin) mRNA expression in NI + AI rats compared with NI or AI rats. Next, we performed microRNA microarrays to identify potential regulators of E-cadherin in NI + AI rats. We confirmed the overexpression of miR-155, a predicted regulator of E-cadherin, and selected it for further analysis based on reported significance in human IBD. Using ingenuity pathway analysis software, the targets and related canonical pathway of miR-155 were analyzed. Mechanistic studies identified histone hyperacetylation at the Mir155 promoter in NI + AI rats, concomitant with elevated RNA polymerase II binding. In vitro, E-cadherin knockdown markedly increased epithelial cell permeability, as did overexpression of miR-155 mimics, which significantly suppressed E-cadherin protein. In vivo, NI + AI colonic permeability was significantly reversed with administration of miR-155 inhibitor rectally. Our collective findings indicate that early-life inflammatory stressors trigger a significant and sustained epithelial injury by suppressing E-cadherin through epigenetic mechanisms.


Assuntos
Caderinas/genética , Colo/imunologia , Epigênese Genética/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , MicroRNAs/metabolismo , Acetilação , Adulto , Animais , Caderinas/imunologia , Caderinas/metabolismo , Linhagem Celular , Colo/citologia , Colo/patologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Recém-Nascido , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Junções Intercelulares/patologia , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Masculino , MicroRNAs/antagonistas & inibidores , Permeabilidade/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ratos
20.
J Cancer Prev ; 25(4): 189-203, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33409252

RESUMO

Natural compounds from diverse sources, including botanicals and commonly consumed foods and beverages, exert beneficial health effects via mechanisms that impact the epigenome and gene expression during disease pathogenesis. By targeting the so-called epigenetic 'readers', 'writers', and 'erasers', dietary phytochemicals can reverse abnormal epigenome signatures in cancer cells and preneoplastic stages. Thus, such agents provide avenues for cancer interception via prevention or treatment/therapeutic strategies. To date, much of the focus on dietary agents has been directed towards writers (e.g., histone acetyltransferases) and erasers (e.g., histone deacetylases), with less attention given to epigenetic readers (e.g., BRD proteins). The drug JQ1 was developed as a prototype epigenetic reader inhibitor, selectively targeting members of the bromodomain and extraterminal domain (BET) family, such as BRD4. Clinical trials with JQ1 as a single agent, or in combination with standard of care therapy, revealed antitumor efficacy but not without toxicity or resistance. In pursuit of second-generation epigenetic reader inhibitors, attention has shifted to natural sources, including dietary agents that might be repurposed as 'JQ1-like' bioactives. This review summarizes the current status of nascent research activity focused on natural compounds as inhibitors of BET and other epigenetic 'reader' proteins, with a perspective on future directions and opportunities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...