Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(31)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37116478

RESUMO

The half Heusler TiNiSn compound is a model system for understanding the relationship among structural, electronic, microstructural and thermoelectric properties. However, the role of defects that deviate from the ideal crystal structure is far from being fully described. In this work, TiNi1+xSn alloys (x= 0, 0.03, 0.06, 0.12) were synthesized by arc melting elemental metals and annealed to achieve equilibrium conditions. Experimental values of the Seebeck coefficient and electrical resistivity, obtained from this work and from the literature, scale with the measured carrier concentration, due to different amounts of secondary phases and interstitial nickel. Density functional theory calculations showed that the presence of both interstitial Ni defects and composition conserving defects narrows the band gap with respect to the defect free structure, affecting the transport properties. Accordingly, results of experimental investigations have been explained confirming that interstitial Ni defects, as well as secondary phases, promote a metallic behavior, raising the electrical conductivity and lowering the absolute values of the Seebeck coefficient.

2.
Chem Phys Lett ; 511(4-6): 405-412, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-22991483

RESUMO

The conformations of gambogic acid were studied using force fields, MM3*, AMBER*, MMFFs and OPLS2005, and B3LYP methods. In a model molecule, only the MM3* and AMBER* methods produced the same number of conformers as B3LYP, generating two conformations for rings 1 and 2, and a single conformation for rings 3 and 4. The preferred conformations of these rings are maintained in a conformer of the actual gambogic acid generated using the AMBER* and B3LYP methods. Although this calculated conformer matches well with the crystal structure, it shows that H43, C25=C26 and C30=C31 bonds may be misassigned in the crystal structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA