Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 121(1): 534-544, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31310376

RESUMO

Hepatitis C virus (HCV) infection is among the leading causes of hepatocellular carcinoma and liver cirrhosis globally, with a high economic burden. The disease progression is well established, but less is known about the spontaneous HCV infection clearance. This study tries to establish the relationship between codon biasness and expression of HCV clearance candidate genes in normal and HCV infected liver tissues. A total of 112 coding sequences comprising 151 679 codons were subjected to the computation of codon indices, namely relative synonymous codon usage, an effective number of codon (Nc), frequency of optimal codon, codon adaptation index, codon bias index, and base compositions. Codon indices report of GC3s, GC12, hydropathicity, and aromaticity implicates both mutational and translational selection in the candidate gene set. This was further correlated with the differentially expressed genes among the selected genes using BioGPS. A significant correlation is observed between the gene expression of normal liver and cancerous liver tissues with codon bias (Nc). Gene expression is also correlated with relative codon bias values, indicating that CCL5, APOA2, CD28, IFITM1, and TNFSF4 genes have higher expression. These results are quite encouraging in selecting the high responsive genes in HCV clearance. However, there could be additional genes which could also orchestrate the clearance role with the above mentioned first line of defensive genes.


Assuntos
Biomarcadores/metabolismo , Uso do Códon/genética , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C/virologia , Carga Viral , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Apolipoproteína A-II/genética , Apolipoproteína A-II/metabolismo , Antígenos CD28/genética , Antígenos CD28/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Hepatite C/genética , Humanos , Ligante OX40/genética , Ligante OX40/metabolismo
2.
Comput Biol Med ; 114: 103449, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31568976

RESUMO

Plant carotenoid cleavage oxygenase (CCO) is an enzyme which catalyzes carotenoids to apocarotenoid products that are involved in several vital physiological functions. The CCO exists in two forms, namely, CCD (Carotenoid Cleavage Dioxygenase) and NCED (Nine-Cis Epoxycarotenoid Dioxygenase). This paper relates to a comparative study on CCD and NCED genes through phylogeny and codon usage analysis. The result of the phylogenetic analysis indicates a closer relationship between CCD and NCED subclass genes, while the RSCU values indicate a high preference for CUC codon in both CCD and NCED gene families. The mean ENc value of NCED genes was found to be 48.76, suggesting a higher codon bias compared to CCD genes. However, the ENc-GC3S plot suggests that both the gene families are under mutational pressure with variations according to their species-specific role. Similarly, the multivariate analysis also suggests that nucleotide mutation bias influences codon usage. Correlation analysis of Axis I and codon adaptation index values indicate a significant correlation between critical indices. Even though the prominence of the variations in codon usage between the two gene families, they are exerted towards the time-specific functional requirement for that plant species. This is evident from the cleaving roles of these enzymes against various carotenoids at different growth stages. The result of this investigation indicates that CCD and NCED genes are under mutational pressure. This codon bias study paves the way for increasing the production of apocarotenoids, which have a great significance in the industry.


Assuntos
Códon/genética , Genes de Plantas/genética , Oxigenases/genética , Proteínas de Arabidopsis/genética , Mutação/genética , Oxigenases/classificação , Filogenia , Plantas/classificação , Plantas/genética
3.
J Cell Biochem ; 120(9): 14700-14710, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31090102

RESUMO

Oncogenesis involves continuous genetic alterations that lead to compromised cellular integrity and immortal cell fate. The cells remain under excessive stress due to endo- and exogenous influences. Human Satellite III long noncoding RNA (SatIII lncRNA) is a key regulator of the global cellular stress response, although its function is poorly explained in cancers. The principal regulator of cancer meshwork is tumor protein p53, which if altered may result in chemoresistance. The heat shock factor 1 (HSF1) being a common molecule between the oncogenic control and global cellular stress acts as an oncogene as well as transcribes SatIII upon heat shock. This prompted us to determine the structure of SatIII RNA and establish the association between SatIII-HSF1-p53. We determined the most stable structure of SatIII RNA with the least energy of - 115.7 kcal/mol. Also, we observed a possible interaction of p53 with SatIII and HSF1 using support vector machine (SVM) algorithm for predicting RNA-protein interaction (RPI). Further, we employ the STRING database to understand if p53 is an interacting component of the nuclear stress bodies (nSBs). A precise inference was drawn from molecular docking which confirmed the interaction of SatIII-HSF1-p53, where a mutated p53 resulted in an altered DNA-binding property with the SatIII molecule. This study being first of its kind infers p53 to be a possible integral component of the nSBs, which may regulate cellular stress response during cancer progression in the presence of HSF1 and SatIII. An extended research on the regulations of SatIII and p53 may open new avenues in the field of apoptosis in cancer and the early approach of molecular targeting.


Assuntos
Carcinogênese/patologia , Núcleo Celular/genética , Fatores de Transcrição de Choque Térmico/metabolismo , RNA Longo não Codificante/metabolismo , RNA Satélite/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Células HeLa , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Humanos , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Satélite/química , RNA Satélite/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
4.
J Cell Biochem ; 119(11): 9346-9356, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30105828

RESUMO

Oryza sativa is vastly affected by microbial pathogen, causing blight-related diseases, which in turn deplete the growth and productivity of rice. In this study, we analyzed four bacterial rice pathogen genomes and reported on their codon usage that might have greater implication in mutation-related research. Differential codon usage indices, such as codon adaptation index (CAI), codon bias index (CBI), effective number of codons (ENc), relative synonymous codon usage (RSCU), correspondence analysis (COA), and parity plots, were applied on coding sequences of Pseudomonas fuscovaginae, Pseudomonas syringae, Xanthomonas oryzae, and Pseudomonas avenae speices. The RSCU results proposed a high-frequency usage of CUG and CGC that codes for leucine and arginine in all of the species. The CBI and CAI values between the genomes range from 0.17 to 0.3 and from 0.26 to 0.35, respectively, indicating a direct proportionality between these indexes. The mean ENc value of P. avenae coding sequence showed high codon bias compared with other genomes. The axis I variation from COA analysis shows a mean value of 42.28% codon variations in these bacterial species. Correlation studies between axis I and ENc-GC3, along with CAI and CBI, suggested the presence of nucleotide bias and mutational pressure as major forces for codon bias within these species. Hence, certain genes with high CAI-CBI have been correlated for better gene expression. Our study highlights the importance of nucleotide biasness, mutation pressure, and natural selection in shaping protein-coding genes in these four rice-affecting bacteria. This would further help in investigating the evolution of pathogenic gene families, which may direct research toward synthetic genes that could be suppressed or overrepresented based on their codon usage pattern toward pathogenicity.


Assuntos
Bactérias/patogenicidade , Códon/genética , Oryza/genética , Oryza/microbiologia , Bactérias/genética
5.
Prog Biophys Mol Biol ; 140: 107-116, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29746888

RESUMO

IFNL3 gene plays a crucial role in immune defense against viruses. It induces the interferon stimulated genes (ISGs) with antiviral properties by activating the JAK-STAT pathway. In this study, we investigated the evolutionary force involved in shaping the IFNL3 gene to perform its downstream function as a regulatory gene in HCV clearance. We have selected 25 IFNL3 coding sequences with human gene as a reference sequence and constructed a phylogeny. Furthermore, rate of variation, substitution saturation test, phylogenetic informativeness and differential selection were also analysed. The codon evolution result suggests that nearly neutral mutation is the key pattern in shaping the IFNL3 evolution. The results were validated by subjecting the human IFNL3 protein variants to that of the native through a molecular dynamics simulation study. The molecular dynamics simulation clearly depicts the negative impact on the reported variants in human IFNL3 protein. However, these detrimental mutations (R157Q and R157W) were shown to be negatively selected in the evolutionary study of the mammals. Hence, the variation revealed a mild impact on the IFNL3 function and may be removed from the population through negative selection due to its high functional constraints. In a nutshell, our study may contribute the overall evidence in phylotyping and structural transformation that takes place in the non-synonymous substitutions of IFNL3 protein. Substantially, our obtained theoretical knowledge will lay the path to extend the experimental validation in HCV clearance.


Assuntos
Evolução Molecular , Hepatite C/genética , Hepatite C/imunologia , Interleucinas/genética , Interleucinas/metabolismo , Animais , Sequência Conservada , Humanos , Interleucinas/química , Simulação de Dinâmica Molecular , Mutação , Filogenia , Conformação Proteica , Alinhamento de Sequência
6.
Cell Biochem Biophys ; 76(1-2): 173-185, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28770488

RESUMO

Wnt signaling pathway has been reported to play crucial role in intestinal crypt formation and deregulation of this pathway is responsible for colorectal cancer initiation and progression. Axin 1, a scaffold protein, play pivotal role in the regulation of Wnt/ß-catenin signaling pathway and has been found to be mutated in several cancers; primarily in colon cancer. Considering its crucial role, a structural and functional analysis of missense mutations in Axin 1 gene was performed in this study. Initially, one hundred non-synonymous single nucleotide polymorphisms in the coding regions of Axin 1 gene were selected for in silico analysis. Six variants (G820S, G856S, E830K, L811V, L847V, and R767C) were predicted to be deleterious by combinatorial prediction. Further investigation of structural attributes confirmed two highly deleterious single nucleotide polymorphisms (G820S and G856S). Molecular dynamics simulation demonstrated variation in different structural attributes between native and two highly deleterious Axin 1 mutant models. Finally, docking analysis showed variation in binding affinity of mutant Axin 1 proteins with two destruction complex members, GSK3ß and adenomatous polyposis. The results collectively showed the deleterious effect of the above predicted single nucleotide polymorphisms on the Axin 1 protein structure and could prove to be an adjunct in the disease genotype-phenotype correlation studies.


Assuntos
Proteína Axina/metabolismo , Simulação de Dinâmica Molecular , Proteína da Polipose Adenomatosa do Colo/química , Proteína da Polipose Adenomatosa do Colo/metabolismo , Sequência de Aminoácidos , Proteína Axina/química , Proteína Axina/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Glicogênio Sintase Quinase 3 beta/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Estrutura Terciária de Proteína , Interface Usuário-Computador , Via de Sinalização Wnt
7.
Biotechnol Appl Biochem ; 64(5): 657-666, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26800850

RESUMO

The phosphatase and tensin homolog (PTEN) gene plays a crucial role in signal transduction by negatively regulating the PI3K signaling pathway. It is the most frequent mutated gene in many human-related cancers. Considering its critical role, a functional analysis of missense mutations of PTEN gene was undertaken in this study. Thirty five nonsynonymous single nucleotide polymorphisms (nsSNPs) within the coding region of the PTEN gene were selected for our in silico investigation, and five nsSNPs (G129E, C124R, D252G, H61D, and R130G) were found to be deleterious based on combinatorial predictions of different computational tools. Moreover, molecular dynamics (MD) simulation was performed to investigate the conformational variation between native and all the five mutant PTEN proteins having predicted deleterious nsSNPs. The results of MD simulation of all mutant models illustrated variation in structural attributes such as root-mean-square deviation, root-mean-square fluctuation, radius of gyration, and total energy; which depicts the structural stability of PTEN protein. Furthermore, mutant PTEN protein structures also showed a significant variation in the solvent accessible surface area and hydrogen bond frequencies from the native PTEN structure. In conclusion, results of this study have established the deleterious effect of the all the five predicted nsSNPs on the PTEN protein structure. Thus, results of the current study can pave a new platform to sort out nsSNPs that can be undertaken for the confirmation of their phenotype and their correlation with diseased status in case of control studies.


Assuntos
PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Polimorfismo de Nucleotídeo Único/fisiologia , Biologia Computacional , Mineração de Dados , Humanos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto/genética , Mutação de Sentido Incorreto/fisiologia , PTEN Fosfo-Hidrolase/química , Conformação Proteica
8.
Mol Biol Rep ; 43(10): 1101-17, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27461217

RESUMO

HCV infection causes acute and chronic liver diseases including, cirrhosis and hepatocellular carcinoma. Following HCV infection, spontaneous clearance occurs in approximately 20 % of the population dependant upon HCV genotype. In this study, functional and non-functional variant analysis was executed for the classical and the latest HCV clearance candidate genes namely, KIR2DL3 and IFNL3. Initially, the functional effects of non-synonymous SNPs were assigned on exposing to homology based tools, SIFT, PolyPhen-2 and PROVEAN. Further, UTR and splice sites variants were scanned for the gene expression and regulation changes. Subsequently, the haplotype and CNV were also identified. The mutation H77Y of KIR2DL3 and R157Q, H156Y, S63L, R157W, F179V, H128R, T101M, R180C, and F176I of IFNL3 results in conservation, RMSD, total energy, stability, and secondary structures revealed a negative impact on the structural fitness. UTRscan and the splice site result indicate functional change, which may affect gene regulation and expression. The graphical display of selected population shows alleles like rs270779, rs2296370, rs10423751, rs12982559, rs9797797, and rs35987710 of KIR2DL3 and rs12972991, rs12980275, rs4803217, rs8109886, and rs8099917 of IFNL3 are in high LD with a measure of [Formula: see text] broadcasting its protective effect in HCV clearance. Similarly, CNV report suggests major DNA fragment loss that could have a profound impact on the gene expression affecting the overall phenotype. This roundup report specifies the effect of NK cell receptor, KIR2DL3 and IFNL3 variants that can have a better prospect in GWAS and immunogenetic studies leading to better understanding of HCV clearance and progression.


Assuntos
Biologia Computacional/métodos , Interleucinas/genética , Polimorfismo de Nucleotídeo Único , Receptores KIR2DL3/genética , Variações do Número de Cópias de DNA , Ligação Genética , Predisposição Genética para Doença , Genótipo , Hepatite C/genética , Hepatite C/virologia , Humanos , Interferons , Interleucinas/química , Receptores KIR2DL3/química , Remissão Espontânea
9.
Gene ; 584(1): 97-109, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26968890

RESUMO

NFκB has been known to be a necessary transcription factor for the functioning of nearly all cells in a living organism. For its proper functioning, it talks to several other molecular cofactors and interacts with their functionalities resulting in a convoluted cross talking mesh of signalling networks. To completely understand the working of nuclear factor-kappa B protein, one needs to understand the interactions that occur during its lifecycle, with cofactors from various biological processes. This study attempts to elaborate and bridge the gaps on the cross-talk interactions that NFkB is a part of, during its activation pathway. For this Cytoscape and its various plugins (Cytocopter, Allegro, AgilentLitSearch and Styles) are employed. Other related pathways were also collated and analysed for cross-talk between NfκB and interacting molecules. NFκB was found to mainly interact with E3 ubiquitin ligase, NIK, RIP, TCR, IRAK-1, TLR, TRAF-6, NLR and IL-1, details of which are discussed as a part of this study.


Assuntos
NF-kappa B/metabolismo , Humanos , Fosforilação , Transdução de Sinais , Ubiquitinação
10.
J Biomol Struct Dyn ; 32(9): 1443-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23914916

RESUMO

Claudin-1 (CLDN1) in association with envelope glycoprotein (CD81) mediates the fusion of HCV into the cytosol. Recent studies have indicated that point mutations in CLDN1 are important for the entry of hepatitis C virus (HCV). To validate these findings, we employed a computational platform to investigate the structural effect of two point mutations (I32M and E48K). Initially, three-dimensional co-ordinates for CLDN1 receptor sequence were generated. Then, three mutant models were built using the point mutation including a double mutant (I32M/E48K) model from the native model structure. Finally, all the four model structures including the native and three mutant models were subjected to molecular dynamics (MD) simulation for a period of 25 ns to appreciate their dynamic behavior. The MD trajectory files were analyzed using cluster and principal component method. The analysis suggested that either of the single mutation has negligible effect on the overall structure of CLDN1 compared to the double mutant form. However, the double mutant model of CLDN1 shows significant negative impact through the impairment of H-bonds and the simultaneous increase in solvent accessible surface area. Our simulation results are visibly consistent with the experimental report suggesting that the CLDN1 receptor distortion is prominent due to the double mutation with large surface accessibility. This increase in accessible surface area due to the coexistence of double mutation may be presumed as one of the key factor that results in permissive action of HCV attachment and infection.


Assuntos
Claudina-1/química , Hepacivirus/fisiologia , Claudina-1/genética , Simulação por Computador , Humanos , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Internalização do Vírus
11.
Gene ; 508(2): 211-20, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22903033

RESUMO

Serotonin (5-HT) and its receptors have been involved in critical signal transduction mechanism and deregulation implicated in mood-related disorders. 5-HT activities are mediated through a family of transmembrane spanning serotonin receptors. Both within the family and species, 5-HT receptor protein sequence diversity and 7-transmembrane structural homogeneity have long been intriguing. In this study, we have analyzed the codon site constraint in 5-HT1 subclass receptors from 13 orthologous mammalian mRNA coding sequence. Further, the study was extended to computationally investigate the impact of non-synonymous sites with respect to function and structural significance through sequence homology algorithm and molecular dynamics simulation (MDS). Codon sites with significant posterior probability were observed in 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptor indicating variations in site constraint within the 5-HT1 sub-class genes. In 5-HT(1A) receptor, seven sites were detected at the functional intracellular loop(3) (ICL(3)) with higher substitution rate through Codeml program. Sequence homology algorithm identifies that these sites were functionally tolerant within the mammals representing a selectively relaxed constraint at this domain. On the other hand, the root mean square deviation (rmsd) values from MDS suggest differences in structural conformation of ICL(3) models among the species. Specifically, the human ICL(3) model fluctuation was comparatively more stable than other species. Hence, we argue that these sites may have varying influence in G-proteins coupling and activation of effectors systems through downstream interacting accessory proteins of cell among the species. However, further experimental studies are required to elucidate the precise role and the seeming difference of these sites in 5-HT receptors between species.


Assuntos
Códon/genética , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/genética , Seleção Genética/genética , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1B de Serotonina/química , Receptor 5-HT1B de Serotonina/genética , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT1D de Serotonina/química , Receptor 5-HT1D de Serotonina/genética , Receptor 5-HT1D de Serotonina/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
12.
Gene ; 503(1): 92-100, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22480817

RESUMO

5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets.


Assuntos
Códon/genética , Família Multigênica , Receptores de Serotonina/genética , Animais , Bovinos , Bases de Dados Genéticas , Cães , Cobaias , Cavalos/genética , Humanos , Camundongos , Nucleotídeos/genética , Gambás/genética , Primatas/genética , Ratos , Suínos/genética
13.
Gene ; 502(1): 16-26, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22521746

RESUMO

The huge polymorphic data have been prioritized towards a specific disease based on sequence and structure homology tools to a large extent. In this study, we have explored the potential non-synonymous Single Nucleotide Polymorphism (nsSNP) in serotonin (5-HT) receptors involved in psychotic syndromes and their response pathway. The most damaging point mutations were screened from 12 classes of serotonin receptors comprising 7743 variants. In 5HT(1A) receptor, two alleles were found to be highly deleterious located at ligand binding extracellular-2 and one at intracellular loop-3 domains. Similarly, we found two alleles predicted to be highly damaging in 5HT(2A) residing at N and C-Terminal domains. The above alleles were further confirmed based on their flexibility and stability difference using the molecular dynamic simulation analysis. Integrating these results appeared promising for being able to filter out potential non-synonymous Single Nucleotide Polymorphisms for neuropsychiatric disorders.


Assuntos
Simulação por Computador , Transtornos Mentais/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT2A de Serotonina/genética , Algoritmos , Sequência de Aminoácidos , Substituição de Aminoácidos , Predisposição Genética para Doença , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT2A de Serotonina/química , Fatores de Risco , Homologia de Sequência de Aminoácidos , Termodinâmica , Regiões não Traduzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...