Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2401386, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894575

RESUMO

Since two-dimensionalal (2D) materials have distinct chemical and physical properties, they are widely used in various sectors of modern technologies. In the domain of diagnostic biodevices, particularly for point-of-care (PoC) biomedical diagnostics, 2D-based field-effect transistor biosensors (bio-FETs) demonstrate substantial potential. Here, in this review article, the operational mechanisms and detection capabilities of biosensing devices utilizing graphene, transition metal dichalcogenides (TMDCs), black phosphorus, and other 2D materials are addressed in detail. The incorporation of these materials into FET-based biosensors offers significant advantages, including low detection limits (LOD), real-time monitoring, label-free diagnosis, and exceptional selectivity. The review also highlights the diverse applications of these biosensors, ranging from conventional to wearable devices, underscoring the versatility of 2D material-based FET devices. Additionally, the review provides a comprehensive assessment of the limitations and challenges faced by these devices, along with insights into future prospects and advancements. Notably, a detailed comparison of FET-based biosensors is tabulated along with various other biosensing platforms and their working mechanisms. Ultimately, this review aims to stimulate further research and innovation in this field while educating the scientific community about the latest advancements in 2D materials-based biosensors.

2.
J Colloid Interface Sci ; 659: 1-10, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38157721

RESUMO

Resistive random-access memory (RRAMs) has attracted significant interest for their potential applications in embedded storage and neuromorphic computing. Materials based on metal chalcogenides have emerged as promising candidates for the fulfilment of these requirements. Due to its ability to manipulate electronic states and control trap states through controlled compositional dynamics, metal chalcogenide RRAM has excellent non-volatile resistive memory properties. In the present we have synthesized ZnO-CdO hybrid nanocomposite by using hydrothermal method as an active layer. The Ag/C15ZO/Pt hybrid nanocomposite structure memristors showed electrical properties similar to biological synapses. The device exhibited remarkably stable resistive switching properties that have a low SET/RESET (0.41/-0.2) voltage, a high RON/OFF ratio of approximately 105, a high retention stability, excellent endurance reliability up to 104 cycles and multilevel device storage performance by controlling the compliance current. Furthermore, they exhibited an impressive performance in terms of emulating biological synaptic functions, which include long-term potentiation (LTP), long-term depression (LTD), and paired-pulse facilitation (PPF), via the continuous modulation of conductance. The hybrid nanocomposite memristors notably achieved an impressive recognition accuracy of up to 92.6 % for handwritten digit recognition under artificial neural network (ANN). This study shows that hybrid-nanocomposite memristor performance could lead to efficient future neuromorphic architectures.

3.
Adv Sci (Weinh) ; 10(33): e2303654, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37863822

RESUMO

The exclusive features of two-dimensional (2D) semiconductors, such as high surface-to-volume ratios, tunable electronic properties, and biocompatibility, provide promising opportunities for developing highly sensitive biosensors. However, developing practical biosensors that can promptly detect low concentrations of target analytes remains a challenging task. Here, a field-effect-transistor comprising n-type transition metal dichalcogenide tin disulfide (SnS2 ) is developed over the hexagonal boron nitride (h-BN) for the detection of streptavidin protein (Strep.) as a target analyte. A self-designed receptor based on the pyrene-lysine conjugated with biotin (PLCB) is utilized to maintain the sensitivity of the SnS2 /h-BN FET because of the π-π stacking. The detection capabilities of SnS2 /h-BN FET are investigated using both Raman spectroscopy and electrical characterizations. The real-time electrical measurements exhibit that the SnS2 /h-BN FET is capable of detecting streptavidin at a remarkably low concentration of 0.5 pm, within 13.2 s. Additionally, the selectivity of the device is investigated by measuring its response against a Cow-like serum egg white protein (BSA), having a comparative molecular weight to that of the streptavidin. These results indicate a high sensitivity and rapid response of SnS2 /h-BN biosensor against the selective proteins, which can have significant implications in several fields including point-of-care diagnostics, drug discovery, and environmental monitoring.


Assuntos
Técnicas Biossensoriais , Transistores Eletrônicos , Animais , Bovinos , Feminino , Estreptavidina , Técnicas Biossensoriais/métodos , Dissulfetos , Semicondutores
4.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764237

RESUMO

Growing demand for sustainable wastewater treatment drives interest in advanced photocatalytic materials. Immobilized photocatalysts hold potential for addressing industrial wastewater organic pollutants, offering substantial surface area, agglomeration prevention, and easy removal. In this study, we successfully immobilized ZnO and carbon nanotubes onto a textile substrate through bilateral esterification and explored their effectiveness as a potent photocatalyst for degrading of commercial textile colorant reactive blue 4 (RB-4) colorant. Findings demonstrated significant improvements in photocatalytic performance upon integrating ZnO and CNTs into the fabric, coupled with chitosan immobilization. The immobilization process of ZnO and CNTs onto the substrate was elucidated through a proposed reaction mechanism, while the appearance of carbonyl peaks at 1719.2 cm-1 in the composite fabric further confirmed bilateral esterification. The as-developed immobilized nano-catalyst exhibited remarkable photocatalytic efficiency with an impressive 93.54% color degradation of RB-4. This innovative approach underscores the immense potential of the ternary immobilized (ZnO/fCNT/chitosan) composite fabric for efficient photocatalytic degradation in textile coloration processes. Exploring the early-stage development of immobilized photocatalysts contributes to safer and more eco-friendly practices, addressing pressing environmental challenges effectively.

5.
Adv Sci (Weinh) ; : e2204779, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36373733

RESUMO

Van der Waals (vdW) heterostructures composed of atomically thin two-dimensional (2D) materials have more potential than conventional metal-oxide semiconductors because of their tunable bandgaps, and sensitivities. The remarkable features of these amazing vdW heterostructures are leading to multi-functional logic devices, atomically thin photodetectors, and negative differential resistance (NDR) Esaki diodes. Here, an atomically thin vdW stacking composed of p-type black arsenic (b-As) and n-type tin disulfide (n-SnS2 ) to build a type-III (broken gap) heterojunction is introduced, leading to a negative differential resistance device. Charge transport through the NDR device is investigated under electrostatic gating to achieve a high peak-to-valley current ratio (PVCR), which improved from 2.8 to 4.6 when the temperature is lowered from 300 to 100 K. At various applied-biasing voltages, all conceivable tunneling mechanisms that regulate charge transport are elucidated. Furthermore, the real-time response of the NDR device is investigated at various streptavidin concentrations down to 1 pm, operating at a low biasing voltage. Such applications of NDR devices may lead to the development of cutting-edge electrical devices operating at low power that may be employed as biosensors to detect a variety of target DNA (e.g., ct-DNA) and protein (e.g., the spike protein associated with COVID-19).

6.
Nanoscale Adv ; 4(12): 2744-2751, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-36132280

RESUMO

Tuning of the Fermi level in transition metal dichalcogenides (TMDCs) leads to devices with excellent electrical and optical properties. In this study, we controlled the Fermi level of MoTe2 by deep ultraviolet (DUV) light illumination in different gaseous environments. Specifically, we investigated the reconfigurable carrier type of an intrinsic p-MoTe2 flake that gradually transformed into n-MoTe2 after illumination with DUV light for 30, 60, 90, 120, 160, 250, 500, 900, and 1200 s in a nitrogen (N2) gas environment. Subsequently, we illuminated this n-MoTe2 sample with DUV light in oxygen (O2) gas and reversed its carrier polarity toward p-MoTe2. However, using this doping scheme to reveal the effect of DUV light on various layers (3-30 nm) of MoTe2 is challenging. The DUV + N2 treatment significantly altered the polarity of MoTe2 of different thicknesses from p-type to n-type under the DUV + N2 treatment, but the DUV + O2 treatment did not completely alter the polarity of thicker n-MoTe2 flakes to p-type. In addition, we investigated the photoresponse of MoTe2 after DUV light treatment in N2 and O2 gas environments. From the time-resolved photoresponsivity at different polarity states of MoTe2, we have shown that the response time of the DUV + O2 treated p-MoTe2 is faster than that of the pristine and doped n-MoTe2 films. These carrier polarity modulations and photoresponse paves the way for wider applications of MoTe2 in optoelectronic devices.

7.
Sci Rep ; 12(1): 12085, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840642

RESUMO

The electrical and optical properties of transition metal dichalcogenides (TMDs) can be effectively modulated by tuning their Fermi levels. To develop a carrier-selectable optoelectronic device, we investigated intrinsically p-type MoTe2, which can be changed to n-type by charging a hexagonal boron nitride (h-BN) substrate through the application of a writing voltage using a metal gate under deep ultraviolet light. The n-type part of MoTe2 can be obtained locally using the metal gate pattern, whereas the other parts remain p-type. Furthermore, we can control the transition rate to n-type by applying a different writing voltage (i.e., - 2 to - 10 V), where the n-type characteristics become saturated beyond a certain writing voltage. Thus, MoTe2 was electrostatically doped by a charged h-BN substrate, and it was found that a thicker h-BN substrate was more efficiently photocharged than a thinner one. We also fabricated a p-n diode using a 0.8 nm-thick MoTe2 flake on a 167 nm-thick h-BN substrate, which showed a high rectification ratio of ~ 10-4. Our observations pave the way for expanding the application of TMD-based FETs to diode rectification devices, along with optoelectronic applications.

8.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458016

RESUMO

Field-effect transistors (FET) composed of transition metal dichalcogenide (TMDC) materials have gained huge importance as biosensors due to their added advantage of high sensitivity and moderate bandgap. However, the true potential of these biosensors highly depends upon the quality of TMDC material, as well as the orientation of receptors on their surfaces. The uncontrolled orientation of receptors and screening issues due to crossing the Debye screening length while functionalizing TMDC materials is a big challenge in this field. To address these issues, we introduce a combination of high-quality monolayer WSe2 with our designed Pyrene-based receptor moiety for its ordered orientation onto the WSe2 FET biosensor. A monolayer WSe2 sheet is utilized to fabricate an ideal FET for biosensing applications, which is characterized via Raman spectroscopy, atomic force microscopy, and electrical prob station. Our construct can sensitively detect our target protein (streptavidin) with 1 pM limit of detection within a short span of 2 min, through a one-step functionalizing process. In addition to having this ultra-fast response and high sensitivity, our biosensor can be a reliable platform for point-of-care-based diagnosis.

9.
RSC Adv ; 12(3): 1278-1286, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425203

RESUMO

Transition metal dichalcogenides (TMDs) have received significant attention owing to their thickness-dependent folded current-voltage (I ds-V ds) characteristics, which offer various threshold voltage values. Owing to these astonishing characteristics, TMDs based negative differential resistance (NDR) devices are preferred for the realization of multi-valued logic applications. In this study, an innovative and ground-breaking germanium selenide/hafnium disulfide (p-GeSe/n-HfS2) TMDs van der Waals heterostructure (vdWH) NDR device is designed. An extraordinary peak-to-valley current ratio (≈5.8) was estimated at room temperature and was used to explain the tunneling and diffusion currents by using the tunneling mechanism. In addition, the p-GeSe/n-HfS2 vdWH diode was used as a ternary inverter. The TMD vdWH diode, which can exhibit different band alignments, is a step forward on the road to developing high-performance multifunctional devices in electronics.

10.
Dalton Trans ; 51(3): 797-816, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34874382

RESUMO

With perovskite materials, rapid progress in power conversion efficiency (PCE) to reach 25% has gained a significant amount of attention from the solar cell industry. Since the development of solid-state perovskite solar cells, rapid research development and investigation on structure design, device fabrication and fundamental studies have contributed to solid-state perovskite solar cells to be a strong candidate for next-generation solar energy. The promising efficiency with low-cost materials is the key point over the other material-based solar cells. The power conversion efficiency (PCE) of two-dimensional (2D) perovskite materials is yet to be enhanced in order to contest with the 3D perovskite-based solar cells. Their enormous variety compromises better prospects and possibilities for research. Two-dimensional (2D) perovskites play a multi-functional role within a solar cell, such as a capping layer, passivating layer, prime cell absorber, and in a hybrid 3D/2D perovskite-based solar cell absorber. This review summarizes the evolution of solar cells that are based on 2D perovskites and their prominent character in solar cells, along with the significant trends. The fundamental configuration and the optoelectronic characteristics, including the band orientation and the transportation of the charges, are discussed in detail. The 2D perovskites are analyzed to study the confined charges within the inorganic structure due to the dielectric and quantum confinement influence. Furthermore, the importance of cesium cation (Cs+) doped with 2D substance (BA)2(MA3) PbI3 approach has been discussed to attain high power conversion efficiency (PCE). These attributes offer an efficient step towards air-stable and small-sized perovskites as a new group of renewable energy sources.

11.
Materials (Basel) ; 14(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947133

RESUMO

Two-terminal, non-volatile memory devices are the fundamental building blocks of memory-storage devices to store the required information, but their lack of flexibility limits their potential for biological applications. After the discovery of two-dimensional (2D) materials, flexible memory devices are easy to build, because of their flexible nature. Here, we report on our flexible resistive-switching devices, composed of a bilayer tin-oxide/tungsten-ditelluride (SnO2/WTe2) heterostructure sandwiched between Ag (top) and Au (bottom) metal electrodes over a flexible PET substrate. The Ag/SnO2/WTe2/Au flexible devices exhibited highly stable resistive switching along with an excellent retention time. Triggering the device from a high-resistance state (HRS) to a low-resistance state (LRS) is attributed to Ag filament formation because of its diffusion. The conductive filament begins its development from the anode to the cathode, contrary to the formal electrochemical metallization theory. The bilayer structure of SnO2/WTe2 improved the endurance of the devices and reduced the switching voltage by up to 0.2 V compared to the single SnO2 stacked devices. These flexible and low-power-consumption features may lead to the construction of a wearable memory device for data-storage purposes.

12.
Nanomaterials (Basel) ; 11(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34835767

RESUMO

The electronic properties of single-layer, CVD-grown graphene were modulated by deep ultraviolet (DUV) light irradiation in different radiation environments. The graphene field-effect transistors (GFETs), exposed to DUV in air and pure O2, exhibited p-type doping behavior, whereas those exposed in vacuum and pure N2 gas showed n-type doping. The degree of doping increased with DUV exposure time. However, n-type doping by DUV in vacuum reached saturation after 60 min of DUV irradiation. The p-type doping by DUV in air was observed to be quite stable over a long period in a laboratory environment and at higher temperatures, with little change in charge carrier mobility. The p-doping in pure O2 showed ~15% de-doping over 4 months. The n-type doping in pure N2 exhibited a high doping effect but was highly unstable over time in a laboratory environment, with very marked de-doping towards a pristine condition. A lateral pn-junction of graphene was successfully implemented by controlling the radiation environment of the DUV. First, graphene was doped to n-type by DUV in vacuum. Then the n-type graphene was converted to p-type by exposure again to DUV in air. The n-type region of the pn-junction was protected from DUV by a thick double-coated PMMA layer. The photocurrent response as a function of Vg was investigated to study possible applications in optoelectronics.

13.
Cellulose (Lond) ; 28(18): 11609-11624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703085

RESUMO

Abstract: Cross-linkers have great importance in textile due to the widespread utilization of cellulosic fibers for clothing. Unfortunately, the acute toxicity of formaldehyde-based resins and the poor performance of non-formaldehyde resins still keep the research door open for scientists in this area. Herein, we demonstrated copper nanoparticles induced trimesic acid grafted cellulose as a sustainable solution for multifunctional easy-care clothing. Our treated fabric presents crease recovery angle value of 248° comparable to that of most promising citric acid-based cross-linkers at the chemical concentration of trimesic acid as low as 2% with a sweeping improvement of around 30% in strength retention, not reported earlier. The relatively low fabric stiffness, without any yellowing, is contributing to the comfort and aesthetic demand while nanoparticles induction promoting utmost antimicrobial need. For the first time, the superiority of the development was validated by interlacing the fabric/finish traits with sustainability building blocks that provide the step forward for rapid industrialization. Furthermore, environmental, health, and safety mapping comparison provides a better understanding of the intensity of hazards that different finishing crosslinkers pose on the environment and public health. With improved performance and superior sustainability, such fabric can act as a preferable alternative to the multifunctional easy-care fabric market. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-021-04251-5.

14.
ACS Appl Mater Interfaces ; 13(40): 47882-47894, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34605233

RESUMO

Two-dimensional transition-metal dichalcogenide (2D-TMD) semiconductors and their van der Waals heterostructures (vdWHs) have attracted great attention because of their tailorable band-engineering properties and provide a propitious platform for next-generation extraordinary performance energy-harvesting devices. Herein, we reported unique and unreported germanium selenide/rhenium diselenide (p-GeSe/n-ReSe2) 2D-TMD vdWH photodetectors for extremely sensitive and high-performance photodetection in the broadband spectral range (visible and near-infrared range). A high and gate-tunable rectification ratio (RR) of 7.34 × 105 is achieved, stemming from the low Schottky barrier contacts and sharp interfaces of the p-GeSe/n-ReSe2 2D-TMD vdWHs. In addition, a noticeably high responsivity (R = 2.89 × 105 A/W) and specific detectivity (D* = 4.91 × 1013 Jones), with good external quantum efficiency (EQE = 6.1 × 105) are obtained because of intralayer and interlayer transition of excitations, enabling the broadband photoresponse (λ = 532-1550 nm) at room temperature. Furthermore, fast response times of 16-20 µs are estimated under the irradiated laser of λ = 1550 nm because of interlayer exciton transition. Such a TMD-based compact system offers an opportunity for the realization of high-performance broadband infrared photodetectors.

15.
Adv Sci (Weinh) ; 8(11): e2003713, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34105276

RESUMO

Recently, van der Waals heterostructures (vdWHs) based on transition-metal dichalcogenides (TMDs) have attracted significant attention owing to their superior capabilities and multiple functionalities. Herein, a novel vdWH field-effect transistor (FET) composed of molybdenum ditelluride (MoTe2 ) and palladium diselenide (PdSe2 ) is studied for highly sensitive photodetection performance in the broad visible and near-infrared (VNIR) region. A high rectification ratio of 6.3 × 105 is obtained, stemming from the sharp interface and low Schottky barriers of the MoTe2 /PdSe2 vdWHs. It is also successfully demonstrated that the vdWH FET exhibits highly sensitive photo-detecting abilities, such as noticeably high photoresponsivity (1.24 × 105 A W-1 ), specific detectivity (2.42 × 1014 Jones), and good external quantum efficiency (3.5 × 106 ), not only due to the intra-TMD band-to-band transition but also due to the inter-TMD charge transfer (CT) transition. Further, rapid rise (16.1 µs) and decay (31.1 µs) times are obtained under incident light with a wavelength of 2000 nm due to the CT transition, representing an outcome one order of magnitude faster than values currently in the literature. Such TMD-based vdWH FETs would improve the photo-gating characteristics and provide a platform for the realization of a highly sensitive photodetector in the broad VNIR region.

16.
ACS Appl Mater Interfaces ; 12(35): 39524-39532, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805800

RESUMO

Vertical heterostructures of transition-metal dichalcogenide semiconductors have attracted considerable attention and offer new opportunities in electronics and optoelectronics for the development of innovative and multifunctional devices. Here, we designed a novel and compact vertically stacked two-dimensional (2D) n-WS2/p-GeSe/n-WS2 van der Waals (vdW) heterojunction bipolar transistor (2D-HBT)-based chemical sensor. The performance of the 2D-HBT vdW heterostructure with different base thicknesses is investigated by two configurations, namely, common-emitter and common-base configurations. The 2D-HBT vdW heterostructure exhibited intriguing electrical characteristics of current amplification with large gains of α ≈ 1.11 and ß ≈ 20.7. In addition, 2D-HBT-based devices have been investigated as chemical sensors for the detection of NH3 and O2 gases at room temperature. The effects of different environments, such as air, vacuum, O2, and NH3, were also analyzed in dark conditions, and with a light of 633 nm wavelength, ultrahigh sensitivity and fast response and recovery times (6.55 and 16.2 ms, respectively) were observed. These unprecedented outcomes have huge potential in modern technology in the development of low-power amplifiers and gas sensors.

17.
ACS Appl Mater Interfaces ; 12(17): 19625-19634, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32242654

RESUMO

Van der Waals heterostructures composed of transition-metal dichalcogenide (TMD) materials have become a remarkable compact system that could offer an innovative architecture for advanced engineering in high-performance energy-harvesting and optoelectronic devices. Here, we report a novel van der Waals (vdW) TMD heterojunction photodiode composed of black phosphorus (p-BP) and palladium diselenide (n-PdSe2), which establish a high and tunable rectification and photoresponsivity. A high rectification up to ≈7.1 × 105 is achieved, which is successfully tuned by employing the back-gate voltage to the heterostructure devices. Besides, the device significantly shows the high and gate-controlled photoresponsivity of R = 9.6 × 105, 4.53 × 105 and 1.63 × 105 A W-1 under the influence of light of different wavelengths (λ = 532, 1064, and 1310 nm) in visible and near-infrared regions, respectively, because of interlayer optical transition and low Schottky. The device also demonstrates extraordinary values of detectivity (D = 5.8 × 1013 Jones) and external quantum efficiency (EQE ≈ 9.4 × 106), which are an order of magnitude higher than the currently reported values. The effective enhancement of photovoltaic characteristics in visible and infrared regions of this TMD heterostructure-based system has a huge potential in the field of optoelectronics to realize high-performance infrared photodetectors.

18.
Nanoscale ; 12(5): 3455-3468, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31990280

RESUMO

Tunneling-based van der Waals (vdW) heterostructures composed of layered transition metal dichalcogenides (TMDs) are emerging as a unique compact system that provides new research avenues in electronics and optoelectronics. Here, we designed a black phosphorus (BP)/rhenium diselenide (ReSe2) and black phosphorus (BP)/hexagonal boron nitride (h-BN)/rhenium diselenide (ReSe2) vdW heterojunction-based diode and studied the tunneling-based different phenomena, such as rectification, negative differential resistance (NDR) and backward rectification. Further, we measured a gate-tunable and tunneling-based rectifying current in BP/ReSe2 and BP/h-BN/ReSe2 heterojunction diodes, and achieved the highest tunneling-based rectification ratio of up to (RR ≈ 3.4 × 107). The high rectifying current is explained using the Simmons-based approximation through direct tunneling (DT) and Fowler-Nordheim tunneling (FNT) in low and high bias regimes. Furthermore, we extracted the photoresponsivity (R ≈ 12 mA W-1) and external quantum efficiency (EQE ≈ 2.79%) under an illuminated laser light source of wavelength 532 nm. Finally, we demonstrated the potential application of our heterostructure devices, such as a binary inverter, rectifier and switching operation at a high frequency. Our tunneling-based heterostructure device could operate at frequencies up to the GHz range. Therefore, our findings provide a new paragon to use the TMD-based vdW heterostructure in electronic and optoelectronic applications, such as multi-valued logic.

19.
ACS Appl Mater Interfaces ; 11(51): 48533-48539, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31790577

RESUMO

Conversion of heat into a spin current by means of the spin Seebeck effect (SSE) is one of the exciting topics in spin caloritronics. By use of this technique, the excess heat may be transformed into a valuable electric voltage by coupling SSE with the inverse spin Hall effect (ISHE). In this study, a thermal gradient and an in-plane magnetic field are used as the driving power to mobilize the spin electrons to produce SSE. A spin voltage is detected by ISHE in the Ni81Fe19 heterostructure by means of a WS2/Pt strip. Using WS2 sheets of different thicknesses, we obtained a large spin Seebeck coefficient of 0.72 µV/K, which is 12 times greater than the conventional spin Seebeck coefficient observed in Pt/Ni81Fe19 bilayer devices. We observe the thickness dependence of tungsten disulfide (WS2) flakes and the polarity reversal of pure SSE signals that are measured without influence from the other thermoelectric effects in our Pt/WS2/Ni81Fe19 device-the most intriguing feature of this study. Without the electric charge conduction, the spins are distributed over a longer distance that is greater than the spin diffusion length of the Ni81Fe19 layer. Such features are strongly desired for designing the efficient spin-caloritronics devices that may be used in the thermoelectric spin generators and the temperature sensors such as thermocouples.

20.
ACS Appl Mater Interfaces ; 11(11): 10959-10966, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807091

RESUMO

There have been a few studies of heterojunctions composed of two-dimensional transition-metal dichalcogenides (TMDs) and an oxide layer, but such studies of high-performance electric and optoelectronic devices are essential. Such heterojunctions with low-resistivity metal contacts are needed by the electronics industry to fabricate efficient diodes and photovoltaic devices. Here, a van der Waals heterojunction composed of p-type black phosphorus (p-BP) and n-type indium-gallium-zinc oxide (n-IGZO) films with low-resistivity metal contacts is reported, and it demonstrates high rectification. The low off-state leakage current in the thick IGZO film accounts for the high rectification ratio in a sharp interface of p-BP/n-IGZO devices. For electrostatic gate control, an ionic liquid is introduced to achieve a high rectification ratio of 9.1 × 104. The photovoltaic measurements of p-BP/n-IGZO show fast rise and decay times, significant open-circuit voltage and short-circuit current, and a high photoresponsivity of 418 mA/W with a substantial external quantum efficiency of 12.1%. The electric and optoelectronic characteristics of TMDs/oxide layer van der Waals heterojunctions are attractive for industrial applications in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA