Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2309627121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294940

RESUMO

We present an accreditation protocol for analogue, i.e., continuous-time, quantum simulators. For a given simulation task, it provides an upper bound on the variation distance between the probability distributions at the output of an erroneous and error-free analogue quantum simulator. As its overheads are independent of the size and nature of the simulation, the protocol is ready for immediate usage and practical for the long term. It builds on the recent theoretical advances of strongly universal Hamiltonians and quantum accreditation as well as experimental progress toward the realization of programmable hybrid analogue-digital quantum simulators.

2.
Phys Rev Lett ; 128(23): 230501, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749187

RESUMO

Quantum states of light have been shown to enhance precision in absorption estimation over classical strategies. By exploiting interference and resonant enhancement effects, we show that coherent-state probes in all-pass ring resonators can outperform any quantum probe single-pass strategy even when normalized by the mean input photon number. We also find that under optimal conditions coherent-state probes equal the performance of arbitrarily bright pure single-mode squeezed probes in all-pass ring resonators.

3.
ACS Nano ; 16(6): 8812-8819, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35436095

RESUMO

Monoclinic ß-Ga2O3, an ultra-wide bandgap semiconductor, has seen enormous activity in recent years. However, the fundamental study of the plasmon-phonon coupling that dictates electron transport properties has not been possible due to the difficulty in achieving higher carrier density (without introducing chemical disorder). Here, we report a highly reversible, electrostatic doping of ß-Ga2O3 films with tunable carrier densities using ion-gel-gated electric double-layer transistor configuration. Combining temperature-dependent Hall effect measurements, transport modeling, and comprehensive mobility calculations using ab initio based electron-phonon scattering rates, we demonstrate an increase in the room-temperature mobility to 201 cm2 V-1 s-1 followed by a surprising decrease with an increasing carrier density due to the plasmon-phonon coupling. The modeling and experimental data further reveal an important "antiscreening" (of electron-phonon interaction) effect arising from dynamic screening from the hybrid plasmon-phonon modes. Our calculations show that a significantly higher room-temperature mobility of 300 cm2 V-1 s-1 is possible if high electron densities (>1020 cm-3) with plasmon energies surpassing the highest energy LO mode can be realized. As Ga2O3 and other polar semiconductors play an important role in several device applications, the fundamental understanding of the plasmon-phonon coupling can lead to the enhancement of mobility by harnessing the dynamic screening of the electron-phonon interactions.

4.
Phys Rev Lett ; 126(15): 150402, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929253

RESUMO

We present a model-independent measure of dynamical complexity based on simulation of complex quantum dynamics using stroboscopic Markovian dynamics. Tools from classical signal processing enable us to infer the Hilbert space dimension of the complex quantum system evolving under a time-independent Hamiltonian via pulsed interrogation. We illustrate this using simulated third-order pump-probe spectroscopy data for exciton transport in a toy model of a coupled dimer with vibrational levels, revealing the dimension of the singly excited manifold of the dimer. Finally, we probe the complexity of excitonic transport in light harvesting 2 (LH2) and Fenna-Matthews-Olson (FMO) complexes using data from two recent nonlinear ultrafast optical spectroscopy experiments. For the latter we make model-independent inferences that are commensurate with model-specific ones, including the estimation of the fewest number of parameters needed to fit the experimental data and identifying the spatial extent, i.e., delocalization size, of quantum states participating in this complex quantum dynamics.

5.
Phys Rev Lett ; 125(8): 080501, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909785

RESUMO

Weak-value amplification (WVA) is a metrological protocol that amplifies ultrasmall physical effects. However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the extensive debate on whether the overall measurement precision is improved in comparison to that of conventional measurement (CM). Here, we experimentally demonstrate the unambiguous advantages of WVA that overcome practical limitations including noise and saturation of photodetection and maintain a shot-noise-scaling precision for a large range of input light intensity well beyond the dynamic range of the photodetector. The precision achieved by WVA is 6 times higher than that of CM in our setup. Our results clear the way for the widespread use of WVA in applications involving the measurement of small signals including precision metrology and commercial sensors.

6.
Phys Rev Lett ; 123(20): 200503, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809066

RESUMO

Only with the simultaneous estimation of multiple parameters are the quantum aspects of metrology fully revealed. This is due to the incompatibility of observables. The fundamental bound for multiparameter quantum estimation is the Holevo Cramér-Rao bound (HCRB) whose evaluation has so far remained elusive. For finite-dimensional systems we recast its evaluation as a semidefinite program, with reduced size for rank-deficient states. We show that it also satisfies strong duality. We use this result to study phase and loss estimation in optical interferometry and three-dimensional magnetometry with noisy multiqubit systems. For the former, we show that, in some regimes, it is possible to attain the HCRB with the optimal (single-copy) measurement for phase estimation. For the latter, we show a nontrivial interplay between the HCRB and incompatibility and provide numerical evidence that projective single-copy measurements attain the HCRB in the noiseless 2-qubit case.

10.
Faraday Discuss ; 221(0): 110-132, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31536094

RESUMO

The role of quantum effects in excitonic energy transport (EET) has been scrutinised intensely and with increasingly sophisticated experimental techniques. This increased complexity requires invoking correspondingly elaborate models to fit spectroscopic data before molecular parameters can be extracted. Possible quantum effects in EET can then be studied, but the conclusions are strongly contingent on the efficacy of the fitting and the accuracy of the model. To circumvent this challenge, we propose a witness for quantum coherence in EET that can be extracted directly from two-pulse pump-probe spectroscopy experimental data. We provide simulations to judge the feasibility of our approach. Somewhat counterintuitively, our protocol does not probe quantum coherence directly, but only indirectly through its implicit deletion. It allows for classical models with no quantum coherence to be decisively ruled out.

13.
Phys Rev Lett ; 121(11): 110505, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265105

RESUMO

Optomechanical sensors involving multiple optical carriers can experience mechanically mediated interactions causing multimode correlations across the optical fields. One instance is laser-interferometric gravitational wave detectors which introduce multiple carrier frequencies for classical sensing and control purposes. An outstanding question is whether such multicarrier optomechanical sensors outperform their single-carrier counterpart in terms of quantum-limited sensitivity. We show that the best precision is achieved by a single-carrier instance of the sensor. For the current LIGO detection system this precision is already reachable.

14.
PLoS One ; 12(8): e0182823, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28796823

RESUMO

NPS SYNTHESIS, CHARACTERIZATION AND AZO-DYE DEGRADATION: A facile cost effective wet chemical method of synthesis is proposed for Cu-NPs, CuO-NPs and Cu-doped ZnO-NPs. The nanomaterials are opto-physically characterized for nano standard quality. Cu-doped ZnO-NPs based catalytic system is found to possess most efficient photocatalytic activity in degradation of two organic azo-dyes namely methyl red (MR) and malachite green (MG) that are released as industrial effluents in eco-environment intercollegium. Two possible photocatalytic degradation pathways are proposed to understand the mechanism of interaction prevailing during the mineralization of MR and MG dyes. Such study provides insight for waste water management. The uniqueness of the present work is 1) possible routes of MG dye degradation by Cu-doped ZnO-NPs and subsequent intermediate by-products are novel and pioneered of its kind. 2) two new intermediate byproducts are identified suggesting prevalence of multiple MR degradation pathways by Cu-doped ZnO-NPs. ASSESSMENT OF ECOTOXICITY: For assessment of residual NPs impact on environment, eco-toxicological assay is performed using plant system (Sesamum indicum L.) as model. The study encompasses seed germination, seedling morphology, quantification of endogenous H2O2 and MDA generation, estimation of DNA double strand break and analysis of cell cycle inhibition. Results highlight reduced ecotoxicity of Cu-doped ZnO-NPs compared to the other synthesized nanomaterials thereby suggesting better environmental applicability in waste water purification.


Assuntos
Cobre/química , Nanopartículas Metálicas/química , Gerenciamento de Resíduos/métodos , Óxido de Zinco/química , Águas Residuárias , Poluentes Químicos da Água
16.
J Phys Chem Lett ; 8(10): 2328-2333, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28475337

RESUMO

We study a large number of physically-plausible arrangements of chromophores, generated via a computational method involving stochastic real-space transformations of a naturally-occurring "reference" structure, illustrating our methodology using the well-studied Fenna-Matthews-Olson complex (FMO). To explore the idea that the natural structure has been tuned for efficient energy transport, we use an atomic transition charge method to calculate the excitonic couplings of each generated structure and a Lindblad master equation to study the quantum transport of an exciton from a "source" to a "drain" chromophore. We find significant correlations between structure and transport efficiency: High-performing structures tend to be more compact and, among those, the best structures display a certain orientation of the chromophores, particularly the chromophore closest to the source-to-drain vector. We conclude that, subject to reasonable, physically motivated constraints, the FMO complex is highly attuned to the purpose of energy transport, partly by exploiting these structural motifs.

17.
Phys Rev Lett ; 119(13): 130504, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341700

RESUMO

A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

18.
Phys Rev Lett ; 116(3): 030801, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26849579

RESUMO

We present a framework for the quantum enhanced estimation of multiple parameters corresponding to noncommuting unitary generators. Our formalism provides a recipe for the simultaneous estimation of all three components of a magnetic field. We propose a probe state that surpasses the precision of estimating the three components individually, and we discuss measurements that come close to attaining the quantum limit. Our study also reveals that too much quantum entanglement may be detrimental to attaining the Heisenberg scaling in the estimation of unitarily generated parameters.

19.
Phys Rev Lett ; 114(21): 210801, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066422

RESUMO

Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.

20.
Nat Commun ; 5: 5584, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25427457

RESUMO

Quantum properties of optical modes are typically assessed by observing their photon statistics or the distribution of their quadratures. Both particle- and wave-like behaviours deliver important information and each may be used as a resource in quantum-enhanced technologies. Weak-field homodyne (WFH) detection provides a scheme that combines the wave- and particle-like descriptions. Here we show that it is possible to observe a wave-like property such as the optical coherence across Fock basis states in the detection statistics derived from discrete photon counting. We experimentally demonstrate these correlations using two WHF detectors on each mode of two classes of two-mode entangled states. Furthermore, we theoretically describe the response of WHF detection on a two-mode squeezed state in the context of generalized Bell inequalities. Our work demonstrates the potential of this technique as a tool for hybrid continuous/discrete-variable protocols on a phenomenon that explicitly combines both approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...