Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(3): 033511, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820108

RESUMO

The Scattered Light Time-history Diagnostic (SLTD) is being implemented at the National Ignition Facility (NIF) to greatly expand the angular coverage of absolute scattered-light measurements for direct- and indirect-drive inertial confinement fusion (ICF) experiments. The SLTD array will ultimately consist of 15 units mounted at a variety of polar and azimuthal angles on the NIF target chamber, complementing the existing NIF backscatter suite. Each SLTD unit collects and diffuses scattered light onto a set of three optical fibers, which transport the light to filtered photodiodes to measure scattered light in different wavelength bands: stimulated Brillouin scattering (350 nm-352 nm), stimulated Raman scattering (430 nm-760 nm), and ω/2 (695 nm-745 nm). SLTD measures scattered light with a time resolution of ∼1 ns and a signal-to-noise ratio of up to 500. Currently, six units are operational and recording data. Measurements of the angular dependence of scattered light will strongly constrain models of laser energy coupling in ICF experiments and allow for a more robust inference of the total laser energy coupled to implosions.

2.
Rev Sci Instrum ; 91(4): 043508, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357683

RESUMO

A line VISAR (Velocity Interferometer System for Any Reflector) has been designed and commissioned at the Sandia National Laboratory's Z-machine. The instrument consists of an F/2 collection system, beam transport, and an interferometer table that contains two Mach-Zehnder type interferometers and an eight channel Gated Optical Imaging (GOI) system. The VISAR probe laser operates at the 532 nm wavelength, and the GOI bandpass is 540-600 nm. The output of each interferometer is passed to an optical streak camera with four selectable sweep speeds. The system is designed with three interchangeable optics modules to select a full field of view of 1 mm, 2 mm, or 4 mm. The optical beam transport system connects the target image plane to the interferometers and the gated optical imagers. The target is integrated into a sacrificial final optics assembly that is integral to the transport beamline.

3.
Rev Sci Instrum ; 89(10): 10I135, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399914

RESUMO

The temporal response of a microchannel plate photomultiplier tube used in the suite of neutron time of flight (nToF) diagnostics at the National Ignition Facility has been characterized to reduce uncertainty in, and understanding of, shot parameters obtained from nTOF data. A short pulse laser, neutral density glass filters, and electrical attenuators were used to gather statistically significant samples of photodetector impulse response functions (IRF) in rapid succession. Individual components have been absolutely calibrated to minimize systematic uncertainties. The zeroth (collected charge), first (transit time), and second central moments (transit time spread) of the IRF were calculated as either the bias voltage or the amount of light incident on the detector was varied. Timing reference was provided by a monitor photodiode viewing a pickoff of the incident laser pulse. The primary sources of uncertainty are jitter in the monitor photodiode and the statistical variation across our measurement period. The spreads in the first moment, with respect to the timing photodiode, and the square root of the second central moment were found to be less than 50 ps and 150 ps, respectively.

4.
Rev Sci Instrum ; 89(8): 083504, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184717

RESUMO

Supra-thermal (>100 keV) electrons generated by laser plasma interactions can be detrimental to the performance of ignition experiments conducted on the National Ignition Facility (NIF). On a NIF shot, the amount of electrons is estimated by measuring the hard X-rays passing through the hohlraum wall. The primary sources of hot electrons in a hohlraum are Stimulated Raman Scattering (SRS) and two plasmon decay (TPD). While SRS is well diagnosed on the NIF, there has been no diagnosis of TPD. We have designed and implemented a new diagnostic to characterize the time history of TPD on the NIF. The instrument provides a time resolved measurement of the 3/2 ω harmonic emission which is indicative of the presence of TPD. We describe the diagnostic setup, calibration, and the preliminary results obtained on NIF hohlraum experiments. We find evidence of a correlation between measured hard X-rays generated from the hot electron bremsstrahlung and the TPD emission.

5.
Opt Lett ; 43(11): 2462-2465, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856404

RESUMO

The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 and 266 nm, producing 211 nm pulses. Flat-topped beam profiles and pulse shapes optimize efficiency. The energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

6.
Appl Opt ; 56(30): 8309-8312, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29091606

RESUMO

We report on two-photon absorption measurements at 213 nm of deep UV transmissible media, including LiF, MgF2, CaF2, BaF2, sapphire (Al2O3), and high-purity grades of fused-silica (SiO2). A high-stability 24 ps Nd:YAG laser operating at the 5th harmonic (213 nm) was used to generate a high-intensity, long-Rayleigh-length Gaussian focus inside the samples. The measurements of the fluoride crystals and sapphire indicate two-photon absorption coefficients between 0.004 and 0.82 cm/GW. We find that different grades of fused silica performed near identically for two-photon absorption; however, there are differences in linear losses associated with purity. A low two-photon absorption cross section is measured for MgF2, making it an ideal material for the propagation of high-intensity deep UV lasers.

7.
Rev Sci Instrum ; 87(11): 11E510, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910648

RESUMO

An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 µm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 1020 cm-3 while a 3ω probe will be used for plasma densities of ∼1 × 1019 cm-3. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

8.
Rev Sci Instrum ; 87(11): 11E549, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910656

RESUMO

The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ0-210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 1020 electrons/cm3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

9.
Rev Sci Instrum ; 87(11): 11D837, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910365

RESUMO

Neutron-induced visible scintillation in neutron time of flight (NToF) diagnostics at the National Ignition Facility (NIF) is measured with 40 mm single stage micro-channel plate photomultipliers and a 40 mm vacuum photodiode, outside the neutron line of sight. In NIF experiments with 14 MeV neutron yields above Y > 10 × 1015 these tubes are configured to deliver of order 1 nC of charge in the nominally 5 ns NToF into a 50 Ω load. We have examined a number of 40 mm tubes manufactured by Photek Ltd. of St. Leonards on Sea, UK, to determine possible changes in the instrument impulse response as a function of signal charge delivered in 1 ns. Precision NToF measurements at approximately 20 m require that we characterize changes in the impulse response moments to <40 ps for the first central moment and ∼2% rms for the square root of the second central moment with ∼500 ps value. Detailed results are presented for three different diode configurations.

10.
Rev Sci Instrum ; 87(11): 11D603, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910437

RESUMO

An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

11.
Rev Sci Instrum ; 87(11): 11E202, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910532

RESUMO

We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

12.
Rev Sci Instrum ; 81(10): 10D921, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033953

RESUMO

Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

13.
Ultramicroscopy ; 70(3): 107-13, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9499588

RESUMO

A two-dimensional application specific integrated circuit (ASIC) based detector, designed for X-ray protein crystallography, has been tested to determine its suitability as a direct electron detector for TEM imaging in the voltage range of 20-400 keV. Several markedly different properties of this device distinguish it from the charge coupled device (CCD) detectors: (1) the ASIC detector can be used directly under electron bombardment in the voltage range stated above, therefore requiring no scintillator screen; (2) each active pixel of the device is an electron counter and generates digital output independently; (3) the readout of the device is frameless and event driven; (4) the device can be operated at the room temperature and is nearly noise free; and (5) the counting dynamic range of the device is virtually unlimited. It appears that an imaging system based on this type of device would be ideal for low-dose TEM imaging and online diffraction observation and recording, as well as more conventional imaging, providing the many advantages of direct digital readout for almost all applications.


Assuntos
Cristalografia por Raios X/instrumentação , Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador , Proteínas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...