Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 1293-1307, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134036

RESUMO

Light-powered micro- and nanomotors based on photocatalytic semiconductors convert light into mechanical energy, allowing self-propulsion and various functions. Despite recent progress, the ongoing quest to enhance their speed remains crucial, as it holds the potential for further accelerating mass transfer-limited chemical reactions and physical processes. This study focuses on multilayered MXene-derived metal-TiO2 micromotors with different metal materials to investigate the impact of electronic properties of the metal-semiconductor junction, such as energy band bending and built-in electric field, on self-propulsion. By asymmetrically depositing Au or Ag layers on thermally annealed Ti3C2Tx MXene microparticles using sputtering, Janus structures are formed with Schottky junctions at the metal-semiconductor interface. Under UV light irradiation, Au-TiO2 micromotors show higher self-propulsion velocities due to the stronger built-in electric field, enabling efficient photogenerated charge carrier separation within the semiconductor and higher hole accumulation beneath the Au layer. On the contrary, in 0.1 wt % H2O2, Ag-TiO2 micromotors reach higher velocities both in the presence and absence of UV light irradiation, owing to the superior catalytic properties of Ag in H2O2 decomposition. Due to the widespread use of plastics and polymers, and the consequent occurrence of nano/microplastics and polymeric waste in water, Au-TiO2 micromotors were applied in water remediation to break down polyethylene glycol (PEG) chains, which were used as a model for polymeric pollutants in water. These findings reveal the interplay between electronic properties and catalytic activity in metal-semiconductor junctions, offering insights into the future design of powerful light-driven micro- and nanomotors with promising implications for water treatment and photocatalysis applications.

2.
Polymers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688257

RESUMO

The effective administration of medication has advanced over decades, but the medical community still faces significant demand. Burst release and inadequate assimilation are major drawbacks that affect wound healing efficiency, leading to therapy failure. The widespread application of polymers in biomedical research is significant. The polyether ether ketone (PEEK) family is known for its biocompatibility, inertness, and semi-crystalline thermoplastic properties. In our present studies, we have chosen a member of this family, polyether ketone (PEK), to explore its role as a drug carrier. The PEK backbone was subjected to sulfonation to increase its hydrophilicity. The response surface methodology (RSM) was used to optimize the sulfonation process based on the time, degree of sulfonation, and temperature. The PEK polymer was sulfonated using sulfuric acid at 150 °C for 6 h; back titration was performed to quantify the degree of sulfonation, with 69% representing the maximum sulfonation. SPEK and nalidixic sodium salt were dissolved in dichloroacetic acid to create a thin membrane. The physiological and morphological properties were assessed for the SPEK membrane. The studies on drug release in distilled water and a simulated body fluid over the course of 24 h revealed a controlled, gradual increase in the release rate, correlating with a mathematical model and demonstrating the zero-order nature of the drug release. Hemolysis on the SPEK membrane revealed lower toxicity. The SPEK membrane's biocompatibility was established using in vitro cytotoxicity tests on the Vero (IC50: 137.85 g/mL) cell lines. These results confirm that the SPEK membranes are suitable for sustained drug release.

3.
Nanomaterials (Basel) ; 13(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513047

RESUMO

Bacterial involvement in cancer's development, along with their impact on therapeutic interventions, has been increasingly recognized. This has prompted the development of novel strategies to disrupt essential biological processes in microbial cells. Among these approaches, metal-chelating agents have gained attention for their ability to hinder microbial metal metabolism and impede critical reactions. Nanotechnology has also contributed to the antibacterial field by offering various nanomaterials, including antimicrobial nanoparticles with potential therapeutic and drug-delivery applications. Halloysite nanotubes (HNTs) are naturally occurring tubular clay nanomaterials composed of aluminosilicate kaolin sheets rolled multiple times. The aluminum and siloxane groups on the surface of HNTs enable hydrogen bonding with biomaterials, making them versatile in various domains, such as environmental sciences, wastewater treatment, nanoelectronics, catalytic studies, and cosmetics. This study aimed to create an antibacterial material by combining the unique properties of halloysite nanotubes with the iron-chelating capability of kojic acid. A nucleophilic substitution reaction involving the hydroxyl groups on the nanotubes' surface was employed to functionalize the material using kojic acid. The resulting material was characterized using infrared spectroscopy (IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM), and its iron-chelating ability was assessed. Furthermore, the potential for drug loading-specifically, with resveratrol and curcumin-was evaluated through ultraviolet (UV) analysis. The antibacterial assay was evaluated following CLSI guidelines. The results suggested that the HNTs-kojic acid formulation had great antibacterial activity against all tested pathogens. The outcome of this work yielded a novel bio-based material with dual functionality as a drug carrier and an antimicrobial agent. This innovative approach holds promise for addressing challenges related to bacterial infections, antibiotic resistance, and the development of advanced therapeutic interventions.

4.
Nanomaterials (Basel) ; 13(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110982

RESUMO

The importance of lead analysis in environmental matrices becomes increasingly relevant due to the anthropogenic spread of toxic species in nature. Alongside the existing analytical methods to detect lead in a liquid environment, we propose a new dry approach for lead detection and measurement based on its capture from a liquid solution by a solid sponge and subsequent quantification based on X-ray analyses. The detection method exploits the relationship between the electronic density of the solid sponge, which depends on the captured lead, and the critical angle for total reflection of the X-rays. For this purpose, gig-lox TiO2 layers, grown by modified sputtering physical deposition, were implemented for their branched multi-porosity spongy structure that is ideal for capturing lead atoms or other metallic ionic species in a liquid environment. The gig-lox TiO2 layers grown on glass substrates were soaked into aqueous solutions containing different concentrations of Pb, dried after soaking, and finally probed through X-ray reflectivity analyses. It has been found that lead atoms are chemisorbed onto the many available surfaces within the gig-lox TiO2 sponge by establishing stable oxygen bonding. The infiltration of lead into the structure causes an increase in the overall electronic density of the layer and, thus, an increment of its critical angle. Based on the established linear relationship between the amount of lead adsorbed and the augmented critical angle, a standardized quantitative procedure to detect Pb is proposed. The method can be, in principle, applied to other capturing spongy oxides and toxic species.

5.
Biomolecules ; 13(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36979409

RESUMO

The use of iodine as antiseptic poses some issues related to its low water solubility and high volatility. Stable solid iodine-containing formulations are highly advisable and currently limited to the povidone-iodine complex. In this study, complexes of molecular iodine with 2-hydroxypropyl α-, ß- and γ-cyclodextrins were considered water-soluble iodophors and prepared in a solid state by using three different methods (liquid-assisted grinding, co-evaporation and sealed heating). The obtained solids were evaluated for their iodine content and stability over time in different conditions using a fully validated UV method. The assessment of the actual formation of an inclusion complex in a solid state was carried out by thermal analysis, and the presence of iodine was further confirmed by SEM/EDX and XPS analyses. High levels of iodine content (8.3-10.8%) were obtained with all the tested cyclodextrins, and some influence was exerted by the employed preparation method. Potential use as solid iodophors can be envisaged for these iodine complexes, among which those with 2-hydroxypropyl-α-cyclodextrin were found the most stable, regardless of the preparation technique. The three prepared cyclodextrin-iodine complexes proved effective as bactericides against S. epidermidis.


Assuntos
Ciclodextrinas , Iodo , Iodóforos , Povidona-Iodo , Solubilidade , Água , Varredura Diferencial de Calorimetria
6.
Polymers (Basel) ; 15(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36850254

RESUMO

In this study, antibacterial polymer blends based on Polyvinyl Chloride (PVC) and Polystyrene-Ethylene-Butylene-Styrene (SEBS), loaded with the ionic liquid (IL) 1-hexadecyl-3-methyl imidazolium 1,3-dimethyl 5-sulfoisophthalate (HdmimDMSIP) at three different concentrations (1%, 5%, and 10%), were produced. The IL/blends were characterized by their thermo-mechanical properties, surface morphology, and wettability. IL release from the blends was also evaluated. The agar diffusion method was used to test the antibacterial activity of the blends against Staphylococcus epidermidis and Escherichia coli. Results from thermal analyses showed compatibility between the IL and the PVC matrix, while phase separation in the SEBS/IL blends was observed. These results were confirmed using PY-GC MS data. SEM analyses highlighted abundant IL deposition on PVC blend film surfaces containing the IL at 5-10% concentrations, whereas the SEBS blend film surfaces showed irregular structures similar to islands of different sizes. Data on water contact angle proved that the loading of the IL into both polymer matrices induced higher wettability of the blends' surfaces, mostly in the SEBS films. The mechanical analyses evidenced a lowering of Young's Modulus, Tensile Stress, and Strain at Break in the SEBS blends, according to IL concentration. The PVC/IL blends showed a similar trend, but with an increase in the Strain at Break as IL concentration in the blends increased. Both PVC/IL and SEBS/IL blends displayed the best performance against Staphylococcus epidermidis, being active at low concentration (1%), whereas the antimicrobial activity against Escherichia coli was lower than that of S. epidermidis. Release data highlighted an IL dose-dependent release. These results are promising for a versatile use of these antimicrobial polymers in a variety of fields.

7.
Membranes (Basel) ; 13(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36676910

RESUMO

Conventional drug delivery has its share of shortcomings, especially its rapid drug release with a relatively short duration of therapeutic drug concentrations, even in topical applications. Prolonged drug release can be effectively achieved by modifying the carrier in a drug delivery system. Among the several candidates for carriers studied over the years, poly (ether ether ketone), a biocompatible thermoplastic, was chosen as a suitable carrier. Its inherent hydrophobicity was overcome by controlled sulfonation, which introduced polar sulfonate groups onto the polymer backbone. Optimization of the sulfonation process was completed by the variation of the duration, temperature of the sulfonation, and concentration of sulfuric acid. The sulfonation was confirmed by EDS and the degree of sulfonation was determined by an NMR analysis (61.6% and 98.9%). Various physical properties such as morphology, mechanical strength, and thermal stability were studied using scanning electron microscopy, tensile testing, and thermogravimetric analysis. Cytotoxicity tests were performed on the SPEEK samples to study the variation in biocompatibility against a Vero cell line. The drug release kinetics of ciprofloxacin (CP) and nalidixic acid sodium salt (NA)-loaded membranes were studied in deionized water as well as SBF and compared against the absorbance of standardized solutions of the drug. The data were then used to determine the diffusion, distribution, and permeability coefficients. Various mathematical models were used to fit the obtained data to establish the order and mechanism of drug release. Studies revealed that drug release occurs by diffusion and follows zero-order kinetics.

8.
Polymers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432952

RESUMO

High performances of thermosets deriving from their covalent intermolecular cross-link bonds result in their low recyclability hindering the full exploitation of a truly circular approach for cured thermosets. In this experimental work, the recyclability of a bio-based fully recyclable epoxy resin using a mild chemical recycling process was demonstrated. The recycled polymer obtained was fully characterized to ascertain its structure and properties. MALDI (Matrix-Assisted Laser Desorption/Ionization), GPC (Gel Permeation Chromatography) and NMR (Nuclear Magnetic Resonance) spectroscopy to determine the chemical structure of the recycled polymer were used. The thermomechanical properties of the cured virgin network and of the recycled product obtained were measured by DSC (Differential Scanning Calorimetry) and DMA (Dynamic Mechanical Analysis). Thermogravimetric analysis of the recycled polymer was also performed. The recycled polymer was transformed into a polyurethane by reacting it with an isocyanate. The synthetized polyurethane obtained therefrom was thoroughly characterized by thermogravimetric analysis. This approach proved the possibility to up-scale the recycled product making it available for novel applications exploiting its re-use.

9.
Chemosphere ; 309(Pt 1): 136720, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206916

RESUMO

Microplastics (MPs) in the marine environment undergo complex weathering factors that can affect their ability to interact with different coexisting environmental contaminants (termed here co-contaminants). In this study, the influence of artificially aging using UV on the sorption of a complex mixture of co-contaminants onto MPs was investigated in order to provide meaningful hypotheses on their individual and combined toxicities on sea urchin embryos. A mixture of artificially aged MPs (PS particles and PA microfibers) combined with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or Cd or Cu, both alone and in a mix, were used to expose embryos of Paracentrotus lividus. The effects of polymer aging on co-contaminants bioavailability were assessed by measuring changes in the transcriptional profile of genes involved in oxidative-stress response and skeletogenic and endo-mesodermal specification. Changes in the sorption ability of MPs to co-contaminants in the aqueous phase highlighted that aging did not affect the sorption of BDE-47 and Cd on MPs, although a certain influence on Cu sorption was found. Despite no morphological effects in embryos at the gastrula stage after MPs/contaminants combinatorial exposure emerged, the greatest influence of the aging process was mainly found for combined exposures which included BDE-47. Finally, the exposure to multiple contaminants generated transcriptional profiles poorly related to those activated by single contaminant, at times suggesting a mixture-dependent different aging influence. These results open new scenarios on the controversial role of vector of co-contaminants for MPs, especially when complex and different types of mixtures were considered.


Assuntos
Microplásticos , Paracentrotus , Animais , Plásticos , Polímeros , Disponibilidade Biológica , Cádmio , Misturas Complexas
10.
ACS Omega ; 7(12): 10775-10788, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382325

RESUMO

The uptake ability toward arsenic(V), chromium(VI), and boron(III) ions of ad hoc functionalized magnetic nanostructured devices has been investigated. To this purpose, ligands based on meglumine have been synthesized and used to coat magnetite nanoparticles (Fe3O4) obtained by the co-precipitation methodology. The as-prepared hybrid material was characterized by infrared spectroscopy (IR), X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy combined with energy-dispersive X-ray analysis. Moreover, its magnetic hysteresis properties were measured to evaluate its magnetic properties, and the adsorption kinetics and isothermal models were applied to discern between the different adsorption phenomena. Specifically, the better fitting was observed by the Langmuir isotherm model for all metal ions tested, highlighting a higher uptake in arsenic (28.2 mg/g), chromium (12.3 mg/g), and boron (23.7 mg/g) sorption values if compared with other magnetic nanostructured materials. After adsorption, an external magnetic stimulus can be used to efficiently remove nanomaterials from the water. Finally the nanomaterial can be reused up to five cycles and regenerated for another three cycles.

11.
Mater Sci Eng C Mater Biol Appl ; 122: 111920, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641913

RESUMO

The aim of this study was the development of antimicrobial polyvinylchloride (PVC) blends loaded with 0.1-10% (w/w) of the ILs 1-hexadecyl-3-methylimidazolium 1,3-dimethyl 5-sulfoisophthalate (HdmimDMSIP) and 1-octyloximethyl-3-methylimidazolium hexafluorophosphate (OOMmimPF6). The synthetized ILs were characterized by 1HNMR, MALDI-TOF, DSC and TGA. PVC/ILs films were obtained by solvent casting.Thermal and mechanical properties (tensile stress TS and elongation at break EB), morphology by SEM, surface wettability, antimicrobial activity, cytotoxicity and ILs release in sterile water from PVC/ILs film blends were determined. Results demonstrated that the presence of both ILs in PVC formulation slightly affected thermal and mechanical properties of blends. The loading of both ILs into PVC matrix made PVC/ILs films hydrophilic, especially at the highest concentration of HdmimDMSIP. The PVC/ILs blends displayed antibacterial activity up to ILs lowest concentrations (0.1-0.5%). The inhibition of Escherichia coli growth was lower than that showed toward Staphylococcus epidermidis. The addition of 10% ILs concentration resulted excessive as demonstrated by accumulation of ILs on film surfaces (SEM) and ILs high release from PVC/ILs blends during the first day of water immersion. Biocompatibility studies highlighted that the addition of low amounts of both ILs into PVC matrix is not cytotoxic for mouse fibroblast cells (L929), supporting their potential use for biomedical porposes.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Cloreto de Polivinila
12.
Polymers (Basel) ; 12(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806661

RESUMO

Thermal degradation processes of poly(ether sulfone) random copolymers having different molar amount of diphenolic acid (DPA) units were studied by direct-pyrolysis/mass spectrometry, stepwise pyrolysis-gas chromatography/mass spectrometry and thermogravimetric techniques. Results highlighted that thermal degradation processes occur in the temperature range from 370 to 650 °C, yielding a char residue of 32-35 wt%, which decreases as the mol% of DPA units rises. The pyrolysis/mass spectra data allowed us to identify the thermal decomposition products and to deduce the possible thermal degradation mechanisms. Thermal degradation data suggest that the decarboxylation process of the pendant acid moiety mainly occurs in the initial step of the pyrolysis of the copolymers studied. Successively, the scission of the generated isobutyl groups occurs in the temperature range between 420 and 480 °C. Known processes involving the main chain random scission of the diphenyl sulfone and diphenyl ether groups were also observed.

13.
Polymers (Basel) ; 12(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823561

RESUMO

New functionalized Poly(ether sulfone)s having different molar ratio (10, 20, 30, 50, 70, 100 mol%) of 4,4-bis phenoxy pentanoic acid unit (diphenolic acid; DPA) units were synthesized and characterized by (1H and 13C)-NMR, MALDI-TOF MS, FT-IR, DSC and DMA analyses. The microstructural analysis of the copolymers, obtained by 13C-NMR using an appropriate statistical model, shows a random distribution of copolymer sequences, as expected. The presence of different amount of DPA units along the polymer chains affects the chemical and physical properties of the copolymers. The Tg and the contact angle values decrease as the molar fraction of DPA units increases, whereas the hydrophilicity increases. NMR and MALDI-TOF MS analyses show that all polymer chains are almost terminated with hydroxyl and chlorine as end groups. The presence of cyclic oligomers was also observed by MALDI-TOF MS analysis.

14.
J Chem Ecol ; 46(1): 48-62, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31811439

RESUMO

We investigated in different sites inside or outside the Namib Desert the amino acids composition of the protein material forming the tube silk of Ariadna spiders. These spiders belong to the primitive Segestriidae family and spend their life inside vertical silk burrows dug within the sandy and gravelly soil of arid areas. The silks, previously purified by solubilization in hexafluoroisopropanol, were subjected to partial or total acid hydrolysis. Partial hydrolyzed samples, analyzed by mass spectrometry (matrix assisted laser desorption/ionization and electrospray), led to relevant information on the amino acid sequences in the proteins. The free amino acids formed by complete hydrolysis were derivatized with the Marfey's reagent and characterized by electrospray mass spectrometry. The reconstruction of the amino acids highlights a homogeneous plan in the chemical structure of all the analyzed silks. Eight amino acids constituting the primary structure of the proteins were identified. Alanine and glycine are the most abundant ones, with a prevalence of alanine, constituting together at least 61% of the chemical composition of the protein material, differently from what occurs in known spidroins. High percentages of proline, serine and threonine and low percentages of leucine complete the peculiarity of these proteins. The purified silks were also characterized by Fourier-transform Infrared Spectroscopy and their thermal properties were investigated by differential scanning calorimetry. The comparison of the silk tubes among the various Namibian populations, carried out through a multivariate statistical analysis, shows significant differences in their amino acid assembly possibly due to habitat features.


Assuntos
Aminoácidos/análise , Seda/metabolismo , Aranhas/metabolismo , Animais , Varredura Diferencial de Calorimetria , Hidrólise , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Análise de Componente Principal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Pharmaceutics ; 10(4)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445768

RESUMO

The technique of grafting side chains onto a linear polymeric backbone is commonly used to confer to the new polymeric material with desired properties, such as tunable solubility, ionic charge, biocompatibility, or specific interactions with biological systems. In this paper, two new polybenzofulvene backbones were assembled by spontaneous polymerization of the appropriate benzofulvene monomers (4,6-PO-BF3k and 4',6-PO-BF3k) bearing two clickable propargyloxy groups in different positions of the 3-phenylindene scaffold. Poly-4,6-PO-BF3k and poly-4',6-PO-BF3k were grafted with monomethyl oligo(ethylene glycol) (MOEG) to prepare two new polybenzofulvene brushes (i.e., poly-4,6-MOEG-9-TM-BF3k and poly-4',6-MOEG-9-TM-BF3k) by means of a "grafting onto" approach, that were characterized from the point of view of their macromolecular features, aggregation liability, and in a preliminary evaluation of biocompatibility. The obtained results make these PEGylated polybenzofulvene brushes (PPBFB) derivatives potentially useful as nanocarriers for nanoencapsulation and delivery of drug molecules.

16.
Food Funct ; 8(12): 4713-4722, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29165474

RESUMO

Nowadays, agro-food by-products represent a potential low-cost source of biologically active ingredients which have been paid significant attention as nutraceuticals, medicine, food and cosmetics. In a previous study we evaluated the total sugars, metals and polyphenols of olive mill wastewater (OMWW) from a Cerasuola olive cultivar. In the present work we selectively recovered a sugar and mineral enriched fraction (SMEF) from Cerasuola OMWW by a green adsorption/desorption process. The SMEF was mainly found to be composed of monosaccharides and potassium by HPLC-ELSD and ICP-MS. The in vitro cytotoxicity on human fibroblasts, at different concentrations of the fraction, was investigated by MTT and comet assays. In addition, intracellular reactive oxygen species (ROS) production, apoptosis and cell morphological changes were examined. The physical stability of a formulation containing the SMEF (1% w/w) and its in vivo skin effects were also assessed.Our results highlighted that the SMEF showed a toxic effect at higher concentrations (i.e. cell viability reduction, DNA fragmentation and morphological alterations) well correlated with high ROS levels. Conversely, at low concentrations (0.5% and 1% w/w), no significant changes were observed. For the first time, through stability studies and in vivo tests, we also demonstrated that the SMEF formulation is stable and safe for topical application, since skin hydration improvement without negative effects was observed after 7 days of its use. Therefore, the SMEF has great potential to be used for cosmeceutical applications.


Assuntos
Cosmecêuticos/análise , Resíduos Industriais/análise , Minerais/análise , Olea/química , Extratos Vegetais/isolamento & purificação , Açúcares/análise , Águas Residuárias/análise , Adulto , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Cosmecêuticos/isolamento & purificação , Feminino , Humanos , Minerais/isolamento & purificação , Extratos Vegetais/análise , Açúcares/isolamento & purificação , Adulto Jovem
17.
Environ Sci Pollut Res Int ; 24(21): 17642-17650, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28600791

RESUMO

Behavioral ecotoxicology has become very important in the short time since a change in behavior is very often the first response to environmental altered conditions. We investigated the influence of trace metal intake on the spatial orientation performances of the carabid beetle Parallelomorphus laevigatus, fundamental ability for its survival. The aim of this study was to consider the solar orientation as behavioral biomarker for exposure to trace metal contamination. Therefore, we tested the ability of solar orientation of specimens of this species, fed with shrimps contaminated with three different concentrations of Cu, Zn, or Hg. We carried out the orientation tests after 1, 3, 7, and 10 days of contaminated feeding. Subsequently, we fed these beetles with not contaminated shrimps and again tested them after 1, 3, 7, and 10 days. For all three metals considered and, regardless of the degree of contamination of the food, we have found a progressive and significant counterclockwise displacement of the angle of orientation and a corresponding progressive reduction in the precision in the directional choices by the animals. We also noticed a clear growing recovery in the normal orientation by these insects after returning to their feeding with uncontaminated food. In conclusion, we can consider the orientation in space of P. laevigatus as a behavioral biomarker for exposure to trace metal contamination. We believe that the intake of trace metals may induce the insects to make mistakes in their spatial orientation, due to an acceleration of their biological clock. Such a clock malfunction is not definitive, since the return to a normal diet restores P. laevigatus the ability to re-make the correct directional choices. Ultimately, our results confirm the usefulness of behavioral ecotoxicology investigations; moreover, they stimulate the opportunity to deepen the understanding of functioning of the biological clock in the animals.


Assuntos
Biomarcadores , Besouros , Oligoelementos , Animais , Monitoramento Ambiental , Mercúrio , Metais
18.
Ecotoxicol Environ Saf ; 135: 183-190, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27741459

RESUMO

Carabids are generally considered to be non-specialized predators, and they have been considered useful ecological indicators. They can play a key role in clarifying the route of contaminants in food webs because they are predators of small invertebrates and, in turn, part of the diet of several vertebrates. The Mediterranean species Parallelomorphus laevigatus, which so far has not been studied from an ecotoxicological point of view, is an excellent ecological indicator in sandy coastal environments. We investigated the accumulation of trace elements in Ionian populations of P. laevigatus and evaluated the transfer of metal through the food chain of the coastal ecosystem. We analyzed 15 metals, including 11 essential metals (Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Sn, V and Zn) and four toxic metals (As, Cd, Hg and Pb). Significant differences were found in metal concentration in animal tissues among sites. Our results support the existence of defense mechanisms for the studied species. High values of As, Cd, Cr, Pb, Ni, and Hg detected in the beetles from the control site can be explained by both the emission sources from the nearby industrial plants and the intense agricultural activity. The present paper shows increasing Hg concentrations in the simplified trophic web of sandy beaches and confirms the capability of this pollutant to biomagnify. Moreover, the high value of biomagnification factor (BMF) points to the severe pollution level in this protected area.


Assuntos
Besouros/química , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Cadeia Alimentar , Metais/análise , Oligoelementos/análise , Animais , Ecologia , Ecossistema , Sicília
19.
Ecotoxicol Environ Saf ; 129: 57-65, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26990940

RESUMO

The Ionian beaches of Sicily are of particular ecological interest because they include the basin of the largest active volcano in Europe and hosts both sites subject to natural protection constraints, as well as important industrial settlements. Consequently, the possibilities for these areas to become polluted are numerous. The sandhopper Talitrus saltator has proven to be a good bioindicator of contamination by numerous trace metals on some European coasts. Nevertheless, no data are available for the populations inhabiting the shores of the southern Mediterranean. Now, as metal accumulation has been shown to vary intraspecifically, the aim of this study was to evaluate trace metal accumulation in adults of T. saltator inhabiting Ionian coastal areas of Sicily and make an assessment of natural and anthropogenic metal pollution of this strip of coast. We also extended our survey to As, Co, Mo, Se, Sn and V never investigated before in this species. Significant differences in metal concentration among sites were found in both sand samples and amphipod tissues. The highest metal content was observed near the mouth of Simeto, the longest river of Sicily which collects waters coming from the volcanic territory of Mount Etna. The bioaccumulation of Cd, Cu, Hg and Zn in T. saltator is fully confirmed; it is also proven for As and Mo and assumed for Cr, Fe, Mn and V. Our outcomes let us to evaluate the prevailing influence of telluric contamination of the Ionian sandy shores of Sicily by trace metals. We also come to the conclusion that in the northern sites, pollution originates from volcanic emission while anthropogenic influence prevails in the southern ones.


Assuntos
Anfípodes , Arsênio/análise , Poluentes Ambientais/análise , Metais/análise , Animais , Praias , Monitoramento Ambiental , Rios , Sicília , Erupções Vulcânicas
20.
Immun Ageing ; 12: 20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26543490

RESUMO

Modulation of endogenous cellular defense mechanisms via the vitagene system represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. The possibility of high-throughoutput screening using proteomic techniques, particularly redox proteomics, provide more comprehensive overview of the interaction of proteins, as well as the interplay among processes involved in neuroprotection. Here by introducing the hormetic dose response concept, the mechanistic foundations and applications to the field of neuroprotection, we discuss the emerging role of heat shock protein as prominent member of vitagene network in neuroprotection and redox proteomics as a tool for investigating redox modulation of stress responsive vitagenes. Hormetic mechanisms are reviewed as possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the neurodegenerative disease process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...