Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7630, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538095

RESUMO

To understand the characteristics of particulate matter (PM) in the Southeast Asia region, the spatial-temporal concentrations of PM10, PM2.5 and PM1 in Malaysia (Putrajaya, Bukit Fraser and Kota Samarahan) and Thailand (Chiang Mai) were determined using the AS-LUNG V.2 Outdoor sensor. The period of measurement was over a year from 2019 to 2020. The highest concentrations of all sizes of PM in Putrajaya, Bukit Fraser and Kota Samarahan were observed in September 2019 while the highest PM10, PM2.5 and PM1 concentrations in Chiang Mai were observed between March and early April 2020 with 24 h average concentrations during haze days in ranges 83.7-216 µg m-3, 78.3-209 µg m-3 and 57.2-140 µg m-3, respectively. The average PM2.5/PM10 ratio during haze days was 0.93 ± 0.05, which was higher than the average for normal days (0.89 ± 0.13) for all sites, indicating higher PM2.5 concentrations during haze days compared to normal days. An analysis of particle deposition in the human respiratory tract showed a higher total deposition fraction value during haze days than on non-haze days. The result from this study indicated that Malaysia and Thailand are highly affected by biomass burning activity during the dry seasons and the Southwest monsoon.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Sudeste Asiático , Biomassa , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
2.
J Air Waste Manag Assoc ; 72(1): 10-23, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689589

RESUMO

The rapid generation rate of solid waste is due to the increasing population and industrialization. Nowadays, solid waste has been a major concerning problem in handling and disposal thus adsorption treatment process has been introduced which is an effective and low-cost method in removing organic and inorganic compounds from leachates such as chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N). A most commonly adsorbent used for the removal of organic and inorganic compounds is activated carbon (AC), yet the main disadvantage is being too expensive in cost. Many researchers tried to use low-cost adsorbent waste materials, such as peat soil, limestone etc. This review article reveals a list of low-cost adsorbent and their capacity of adsorption for the removal of COD and NH3-N. Furthermore, the preparation of these low-cost adsorbents as well as their removal efficiencies, relative cost, and limitation are discussed. The most efficient, cost-effective, and environment-friendly adsorbent can be used for the removal of COD and NH3-N thus can be provided for commercial usage or water treatment plant.Implications: The concentration of organic constituents (COD) and ammonia nitrogen in stabilized landfill leachate has significant strong influences of human health and environmental. This review article shows the list of low-cost adsorbent (i.e., Activated carbon, Peat soil, Zeolite, Limestone, and cockle shell and their capacity of adsorption for the removal of COD and ammonia nitrogen. This would be greatly applicable in future research era as well as conventionally minimizing high-cost materials use and thereby lowering the operating cost of leachate wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Análise da Demanda Biológica de Oxigênio , Desnitrificação , Humanos , Nitrogênio , Poluentes Químicos da Água/análise
3.
J Air Waste Manag Assoc ; 72(1): 69-75, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689591

RESUMO

Landfill leachate is a liquid generated due to rainwater percolation through the waste in a landfill or dumping site that may contain high levels of organic matter, both biodegradable and non-biodegradable, which are the major sources of water pollution. Chemical oxygen demand (COD) and Ammoniacal Nitrogen (NH3-N) contents have been relevant indicators of severity and pollution potential of landfill leachate. The reductions of COD and NH3-N were investigated in this study using different combinations of media ratios of green mussel (GM) and zeolite (ZEO). Generally, ZEO is considered as a renowned adsorbent but with a relatively high in cost. In Malaysia, mussel shell is abundantly available as a by-product from the seafood industry, is regarded as waste, and is mostly left at the dumpsite to naturally deteriorate. Its quality and availability make GMs a cost-effective material. In this research study, leachate samples were characterized and found to contain high concentrations of COD and NH3-N. The adsorption process was conducted to find out the best combination media ratio between GM and ZEO. The removing efficiency was determined at different amounts of composite media ratios. The optimal adsorbent mixture ratios between (GM: ZEO) of 1.0:3.0 and 1.5:2.5 were considered as a more efficient technique in removing COD and NH3-N compared to exploiting these adsorbents individually. The optimal extenuation removal reduction was found at an approximately 65% of COD and 78% of NH3-N. The adsorption Isotherm Langmuir model exhibited a better fit with high regression coefficient for COD (R2 = 0.9998) and NH3-N (R2 = 0.9875), respectively. This means that the combination of GM: ZEO adsorption of landfill leachate in this analysis is homogeneous with the monolayer. The mixture of GMs and ZEO was observed to provide an alternative medium for the reduction of COD and NH3-N with comparatively lower cost.Implications: The concentration of organic constituents (COD) and ammoniacal nitrogen in stabilized landfill leachate have significantly strong influences of human health and the environment. The combination of mixing media green mussel and zeolite adsorbent enhancing organic constituents (COD) and ammoniacal nitrogen reduction efficiency from leachate. This would be greatly applicable in future research as well as conventionally minimizing high cost materials like zeolite, thereby lowering the operating cost of leachate treatment.


Assuntos
Bivalves , Poluentes Químicos da Água , Zeolitas , Animais , Análise da Demanda Biológica de Oxigênio , Humanos , Nitrogênio , Alimentos Marinhos , Poluentes Químicos da Água/análise
4.
J Air Waste Manag Assoc ; 72(1): 24-33, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320054

RESUMO

When the inevitable generation of waste is considered as hazardous to health, damaging ecosystem to our environment, it is important to develop an innovative technologies to remediate pollutant sources for the safety and environmental protection. The development of adsorption technique for the reduction of extremely effective pollutants in this regard. Green mussel and zeolite mixing media were investigated for the reduction of the concentration of organic constituents (COD) and ammoniacal nitrogen from leachate. The leachate treatability was analyzed under various stages of treatment parameter, namely mixing ratio, shaking speed, contact time, and pH. Both adsorbent were sieve values in between 2.00-3.35 mm particle size. The optimum pH, shaking speed, contact time, and mixing ratio were determined. Leachate samples were collected from influent untreated detention pond at Simpang Renggam landfill site in Johor, Malaysia. The result of leachate characterization properties revealed that non-biodegradability leachate with higher concentrations of COD (1829 mg/L), ammoniacal nitrogen (406.68 mg/L) and biodegradability value (0.08) respectively. The optimal reduction condition of COD and ammoniacal nitrogen was obtained at 200 rpm shaken speed, 120 minute shaken time, optimum green mussel and zeolite mix ratio was 2.0:2.0, and pH 7. The isothermic study of adsorption shows that Langmuir is best suited for experimental results in terms of Freundlich model. The mixing media also provided promising results to treating leachate. This would be greatly applicable in conventionally minimizing zeolite use and thereby lowering the operating cost of leachate treatment.Implications: The concentration of organic constituents (COD) and ammoniacal nitrogen in stabilized landfill leachate have significant strong influences of human health and environmental. The combination of mixing media green mussel and zeolite adsorbent COD and ammoniacal nitrogen reduction efficiency from leachate. This would be greatly applicable in future research era as well as conventionally minimizing high cost materials like zeolite use and thereby lowering the operating cost of leachate treatment.


Assuntos
Nitrogênio , Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , Ecossistema , Humanos , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Poluentes Químicos da Água/análise
5.
Chemosphere ; 174: 232-242, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28171839

RESUMO

The present work aimed to develop a novel composite material made up of activated cow bone powder (CBP) as a starting material for reducing chemical oxygen demand (COD) and ammonia-nitrogen (NH3N) from palm oil mill effluent (POME). The optimization of the reduction efficiency was investigated using response surface methodology (RSM). Six independent variables used in the optimization experiments include pH (4-10), speed (0.27-9.66 rcf), contact time (2-24 h), particle size (1-4.35 mm), dilution factor (100-500) and adsorbent dosage (65-125 g/L). The chemical functional groups were determined using Fourier transform irradiation (FTIR). The elemental composition were detected using SEM-EDX, while thermal decomposition was investigated using thermo gravimetric analysis (TGA) in order to determine the effects of carbonization temperature on the adsorbent. The results revealed that the optimal reduction of COD and NH3N from raw POME was observed at pH 10, 50 rpm, within 2 h and 3 mm of particle size as well as at dilution factor of 500 and 125 g L-1 of adsorbent dosage, the observed and predicted reduction were 89.60 vs. 85.01 and 75.61 vs. 74.04%, respectively for COD and NH3N. The main functional groups in the adsorbent were OH, NH, CO, CC, COC, COH, and CH. The SEM-EDX analysis revealed that the CBP-composite has a smooth surface with high contents of carbon. The activated CBP has very stable temperature profile with no significant weight loss (9.85%). In conclusion, the CBP-composite investigated here has characteristics high potential for the remediation of COD and NH3N from raw POME.


Assuntos
Análise da Demanda Biológica de Oxigênio , Osso e Ossos/química , Resíduos Industriais/prevenção & controle , Óleos de Plantas/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/normas , Adsorção , Animais , Bovinos , Resíduos Industriais/análise , Óleo de Palmeira , Temperatura , Poluentes Químicos da Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA