Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2298026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170633

RESUMO

Gut - brain communications disorders in irritable bowel syndrome (IBS) are associated with intestinal microbiota composition, increased gut permeability, and psychosocial disturbances. Symptoms of IBS are difficult to medicate, and hence much research is being made into alternative approaches. This study assesses the potential of a treatment with pasteurized Akkermansia muciniphila for alleviating IBS-like symptoms in two mouse models of IBS with different etiologies. Two clinically relevant animal models were used to mimic IBS-like symptoms in C57BL6/J mice: the neonatal maternal separation (NMS) paradigm and the Citrobacter rodentium infection model. In both models, gut permeability, colonic sensitivity, fecal microbiota composition and colonic IL-22 expression were evaluated. The cognitive performance and emotional state of the animals were also assessed by several tests in the C. rodentium infection model. The neuromodulation ability of pasteurized A. muciniphila was assessed on primary neuronal cells from mice dorsal root ganglia using a ratiometric calcium imaging approach. The administration of pasteurized A. muciniphila significantly reduced colonic hypersensitivity in both IBS mouse models, accompanied by a reinforcement of the intestinal barrier function. Beneficial effects of pasteurized A. muciniphila treatment have also been observed on anxiety-like behavior and memory defects in the C. rodentium infection model. Finally, a neuroinhibitory effect exerted by pasteurized A. muciniphila was observed on neuronal cells stimulated with two algogenic substances such as capsaicin and inflammatory soup. Our findings demonstrate novel anti-hyperalgesic and neuroinhibitory properties of pasteurized A. muciniphila, which therefore may have beneficial effects in relieving pain and anxiety in subjects with IBS.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Humanos , Camundongos , Animais , Síndrome do Intestino Irritável/terapia , Privação Materna , Verrucomicrobia/fisiologia
2.
Pain ; 165(5): e39-e54, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756665

RESUMO

ABSTRACT: The potential role of gut microbiota in pain modulation is arousing an emerging interest since recent years. This study investigated neuromodulatory properties of gut microbiota to identify next-generation probiotics to propose alternative therapies for visceral pain management. Neuromodulation ability of 10 bacterial strains isolated from a healthy donor was assessed both on ND7/23 immortalized cell line and primary neuronal cells from rat dorsal root ganglia. This screening highlighted the neuroinhibitory property of Parabacteroides distasonis (F1-2) strain, supported both by its intracellular content and membrane fraction, which was further investigated in visceral pain mouse models. Oral administration of F1-2 resulted in a significant decrease of colonic hypersensitivity (CHS) in dextran sulfate sodium (0.5%) model associated with low-grade inflammation and a significant decrease of CHS in Citrobacter rodentium postinfectious models. No effect of F1-2 oral administration on CHS was observed in a neonatal maternal separation stress model. Antihyperalgesic effect unlikely involved modulation of inflammatory processes or restoration of intestinal barrier. Exploration of direct dialogue mechanisms between this strain and nervous system, assessed by calcium imaging experiments, revealed that F1-2 interacts directly with nociceptors by reducing activation level on capsaicin, inflammatory soup, and bradykinin stimulations. Our study provides new insights about bacteria-host interaction and places P distasonis as a potential therapeutic strategy in the treatment of visceral pain observed in leaky gut-associated pathologies.


Assuntos
Bacteroidetes , Microbioma Gastrointestinal , Hipersensibilidade , Probióticos , Dor Visceral , Camundongos , Ratos , Animais , Privação Materna , Dor Abdominal , Probióticos/uso terapêutico
3.
Gut Microbes ; 14(1): 2022997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35090380

RESUMO

Alterations in brain/gut/microbiota axis are linked to Irritable Bowel Syndrome (IBS) physiopathology. Upon gastrointestinal infection, chronic abdominal pain and anxio-depressive comorbidities may persist despite pathogen clearance leading to Post-Infectious IBS (PI-IBS). This study assesses the influence of tryptophan metabolism, and particularly the microbiota-induced AhR expression, on intestinal homeostasis disturbance following gastroenteritis resolution, and evaluates the efficacy of IL-22 cytokine vectorization on PI-IBS symptoms. The Citrobacter rodentium infection model in C57BL6/J mice was used to mimic Enterobacteria gastroenteritis. Intestinal homeostasis was evaluated as low-grade inflammation, permeability, mucosa-associated microbiota composition, and colonic sensitivity. Cognitive performances and emotional state of animals were assessed using several tests. Tryptophan metabolism was analyzed by targeted metabolomics. AhR activity was evaluated using a luciferase reporter assay method. One Lactococcus lactis strain carrying an eukaryotic expression plasmid for murine IL-22 (L. lactisIL-22) was used to induce IL-22 production in mouse colonic mucosa. C. rodentium-infected mice exhibited persistent colonic hypersensitivity and cognitive impairments and anxiety-like behaviors after pathogen clearance. These post-infectious disorders were associated with low-grade inflammation, increased intestinal permeability, decrease of Lactobacillaceae abundance associated with the colonic layer, and increase of short-chain fatty acids (SCFAs). During post-infection period, the indole pathway and AhR activity were decreased due to a reduction of tryptophol production. Treatment with L. lactisIL-22 restored gut permeability and normalized colonic sensitivity, restored cognitive performances and decreased anxiety-like behaviors. Data from the video-tracking system suggested an upgrade of welfare for mice receiving the L.lactisIL-22 strain. Our findings revealed that AhR/IL-22 signaling pathway is altered in a preclinical PI-IBS model. IL-22 delivering alleviate PI-IBS symptoms as colonic hypersensitivity, cognitive impairments, and anxiety-like behaviors by acting on intestinal mucosa integrity. Thus, therapeutic strategies targeting this pathway could be developed to treat IBS patients suffering from chronic abdominal pain and associated well-being disorders.


Assuntos
Depressão/etiologia , Interleucinas/metabolismo , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/psicologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Cognição , Depressão/genética , Depressão/metabolismo , Depressão/psicologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Humanos , Interleucinas/genética , Intestinos/metabolismo , Intestinos/microbiologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/genética , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...