Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 120(39): 10367-10380, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27677431

RESUMO

This article is aimed at studying the evolution of H2 release as well as radiation-induced defects in polyethylene (PE), as a function of the irradiation dose under anoxic conditions. We analyze the influence of the energy transfers and trapping toward radiation-induced defects on the evolution of the radiation chemical yields with dose. One key objective herein is to quantify the contribution of these transfers toward trans-vinylene (TV) on H2 emission. For this purpose, pure PE was irradiated in a large dose domain and H2 emission was compared to that in predoped PEs containing chemically inserted TV groups irradiated at low doses. In parallel, evolutions of the concentrations of the TV groups and minor defects (vinyl and trans-trans-diene) as a function of dose were considered. Moreover, measuring simultaneously H2 and unsaturated groups had allowed inferring the cross-linking evolution with dose. With this methodology, we have succeeded in quantifying the efficiency of TVs and cross-links as energy traps and, using simple models, in fully describing the evolution of all of the radiation chemical yields. Besides, irradiations were performed using either low linear energy transfer irradiations (electron beams, γ rays) or ion beams, with the objective to assess the influence of the high ionization and excitation densities induced by the latter on PE ageing and energy transfer processes.

2.
Dalton Trans ; (31): 6175-84, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20449114

RESUMO

Radiochemical stability of imidazolium-based ionic liquids constituted of the BuMeIm(+) cation and associated with four commonly used anions (X(-): Tf(2)N(-), TfO(-), PF(6)(-) and BF(4)(-)) has been investigated under gamma irradiation for high irradiation doses (up to 2.0 MGy). The anion effect has been examined by quantifying the radiolytic yields of disappearance for cation and anions and by identifying corresponding radiolysis products with several analytical techniques. On the one hand, a large number of radiolysis products are formed throughout the irradiation in ionic liquid solutions, resulting from reactions of primary generated species of cation and anion by indirect radiolysis. Primary generated species can react together throughout the irradiation by indirect radiolysis to form numerous radiolysis products in small quantities, indicating that several complex degradation pathways are involved for these radiation doses. This degradation pattern has been confirmed by identification of numerous gaseous radiolytic products. On the other hand, quantitative studies show that radiochemical stabilities of ionic liquids are in the same range of values as systems envisioned in nuclear fuel reprocessing with relatively low hydrogen yields. Indeed, this present work emphasizes the suitability of ionic liquids for applications in the nuclear fuel cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...