Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 43(2): 307-323, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37877769

RESUMO

Environmental metabolomics has emerged as a promising technique in the field of biomonitoring and as an indicator of aquatic ecosystem health. In the Milwaukee Estuary (Wisconsin, USA), previous studies have used a nontargeted metabolomic approach to distinguish between zebra mussels (Dreissena polymorpha) collected from sites of varying contamination. To further elucidate the potential effects of contaminants on bivalve health in the Milwaukee Estuary, the present study adopted a caging approach to study the metabolome of quagga mussels (Dreissena bugensis rostriformis) deployed in six sites of varying contamination for 2, 5, or 55 days. Caged mussels were co-deployed with two types of passive sampler (polar organic chemical integrative samplers and semipermeable membrane devices) and data loggers. In conjunction, in situ quagga mussels were collected from the four sites studied previously and analyzed for residues of contaminants and metabolomics using a targeted approach. For the caging study, temporal differences in the metabolomic response were observed with few significant changes observed after 2 and 5 days, but larger differences (up to 97 significantly different metabolites) to the metabolome in all sites after 55 days. A suite of metabolic pathways were altered, including biosynthesis and metabolism of amino acids, and upmodulation of phospholipids at all sites, suggesting a potential biological influence such as gametogenesis. In the caging study, average temperatures appeared to have a greater effect on the metabolome than contaminants, despite a large concentration gradient in polycyclic aromatic hydrocarbons residues measured in passive samplers and mussel tissue. Conversely, significant differences between the metabolome of mussels collected in situ from all three contaminated sites and the offshore reference site were observed. Overall, these findings highlight the importance of contextualizing the effects of environmental conditions and reproductive processes on the metabolome of model organisms to facilitate the wider use of this technique for biomonitoring and environmental health assessments. Environ Toxicol Chem 2024;43:307-323. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Bivalves , Dreissena , Animais , Dreissena/fisiologia , Ecossistema , Estuários , Wisconsin
2.
Environ Monit Assess ; 193(12): 833, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34799782

RESUMO

The National Oceanic and Atmospheric Administration (NOAA), National Centers for Coastal Ocean Science (NCCOS) Mussel Watch Program (MWP), conducts basin-wide monitoring and place-based assessments using dreissenid mussels as bioindicators of chemical contamination in the Laurentian Great Lakes. Polycyclic aromatic hydrocarbons (PAHs) body burden results for the period 2009-2018 were combined into one dataset from multiple MWP studies allowing for a robust characterization of PAH contamination. Patterns in PAH data were identified using descriptive statistics and machine learning techniques. Relationships between total PAH concentration in dreissenid mussel tissue, impervious surface percentages, and PAH relative concentration were identified and used to build a predictive model for the Great Lakes Basin. Significant positive correlation was identified by the Spearman's rank correlation test between total PAH concentration and percent impervious surface. The findings support the paradigm that PAHs are primarily derived from land-based sources. Offshore and riverine locations had the lowest and highest median total PAH concentrations, respectively. PAH assemblages and ratios indicated that pyrogenic sources were more predominant than petrogenic sources and that PAHs at offshore sites exhibited relatively more weathering compared to inshore sites.


Assuntos
Bivalves , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
3.
Estuaries Coast ; 43: 23-38, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32021593

RESUMO

Eutrophication is a challenge to coastal waters around the globe. In many places, nutrient reductions from land-based sources have not been sufficient to achieve desired water quality improvements. Bivalve shellfish have shown promise as an in-water strategy to complement land-based nutrient management. A local-scale production model was used to estimate oyster (Crassostrea virginica) harvest and bioextraction of nitrogen (N) in Great Bay Piscataqua River Estuary (GBP), New Hampshire, USA, because a system-scale ecological model was not available. Farm-scale N removal results (0.072 metric tons acre-1 year-1) were up-scaled to provide a system-wide removal estimate for current (0.61 metric tons year-1), and potential removal (2.35 metric tons year-1) at maximum possible expansion of licensed aquaculture areas. Restored reef N removal was included to provide a more complete picture. Nitrogen removal through reef sequestration was ~ 3 times that of aquaculture. Estimated reef-associated denitrification, based on previously reported rates, removed 0.19 metric tons N year-1. When all oyster processes (aquaculture and reefs) were included, N removal was 0.33% and 0.54% of incoming N for current and expanded acres, respectively. An avoided cost approach, with wastewater treatment as the alternative management measure, was used to estimate the value of the N removed. The maximum economic value for aquaculture-based removal was $105,000 and $405,000 for current and expanded oyster areas, respectively. Combined aquaculture and reef restoration is suggested to maximize N reduction capacity while limiting use conflicts. Comparison of removal based on per oyster N content suggests much lower removal rates than model results, but model harvest estimates are similar to reported harvest. Though results are specific to GBP, the approach is transferable to estuaries that support bivalve aquaculture but do not have complex system-scale hydrodynamic or ecological models.

4.
J Orthop Res ; 36(7): 2030-2038, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29314237

RESUMO

Mechanical characterization of the intervertebral disc involves labor-intensive and destructive experimental methodology. Contrast-enhanced micro-computed tomography is a nondestructive imaging modality for high-resolution visualization and glycosaminoglycan quantification of cartilaginous tissues. The purpose of this study was to determine whether anionic and cationic contrast-enhanced micro-computed tomography of the intervertebral disc can be used to indirectly assess disc mechanical properties in an ex vivo model of disc degeneration. L3/L4 motion segments were dissected from female Lewis rats. To deplete glycosaminoglycan, samples were treated with 0 U/ml (Control) or 5 U/ml papain. Contrast-enhanced micro-computed tomography was performed following incubation in 40% Hexabrix (anionic) or 30 mg I/ml CA4+ (cationic) for 24 h (n = 10/contrast agent/digestion group). Motion segments underwent cyclic mechanical testing to determine compressive and tensile modulus, stiffness, and hysteresis. Glycosaminoglycan content was determined using the dimethylmethylene blue assay. Correlations between glycosaminoglycan content, contrast-enhanced micro-computed tomography attenuation, and mechanical properties were assessed via the Pearson correlation. The predictive accuracy of attenuation on compressive properties was assessed via repeated random sub-sampling cross validation. Papain digestion produced significant decreases in glycosaminoglycan content and corresponding differences in attenuation and mechanical properties. Attenuation correlated significantly to glycosaminoglycan content and to all compressive mechanical properties using both Hexabrix and CA4+ . Predictive linear regression models demonstrated a predictive accuracy of attenuation on compressive modulus and stiffness of 79.8-86.0%. Contrast-enhanced micro-computed tomography was highly predictive of compressive mechanical properties in an ex vivo simulation of disc degeneration and may represent an effective modality for indirectly assessing disc compressive properties. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2030-2038, 2018.


Assuntos
Degeneração do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/diagnóstico por imagem , Microtomografia por Raio-X , Animais , Fenômenos Biomecânicos , Cartilagem Articular , Meios de Contraste , Feminino , Glicosaminoglicanos , Degeneração do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/patologia , Ácido Ioxáglico , Vértebras Lombares , Ratos , Ratos Endogâmicos Lew , Reprodutibilidade dos Testes , Estresse Mecânico
5.
Environ Sci Technol ; 52(1): 173-183, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28994282

RESUMO

Land-based management has reduced nutrient discharges; however, many coastal waterbodies remain impaired. Oyster "bioextraction" of nutrients and how oyster aquaculture might complement existing management measures in urban estuaries was examined in Long Island Sound, Connecticut. Eutrophication status, nutrient removal, and ecosystem service values were estimated using eutrophication, circulation, local- and ecosystem-scale models, and an avoided-costs valuation. System-scale modeling estimated that 1.31% and 2.68% of incoming nutrients could be removed by current and expanded production, respectively. Up-scaled local-scale results were similar to system-scale results, suggesting that this up-scaling method could be useful in bodies of water without circulation models. The value of removed nitrogen was estimated using alternative management costs (e.g., wastewater treatment) as representative, showing ecosystem service values of $8.5 and $470 million per year for current and maximum expanded production, respectively. These estimates are conservative; removal by clams in Connecticut, oysters and clams in New York, and denitrification are not included. Optimistically, the calculation of oyster-associated removal from all leases in both states (5% of bottom area) plus denitrification losses showed increases to 10%-30% of annual inputs, which would be higher if clams were included. Results are specific to Long Island Sound, but the approach is transferable to other urban estuaries.


Assuntos
Ecossistema , Estuários , Animais , Aquicultura , Eutrofização , New York , Nitrogênio , Frutos do Mar
6.
Toxicon ; 65: 15-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23313447

RESUMO

This study examined the toxicity of six Gambierdiscus species (Gambierdiscus belizeanus, Gambierdiscus caribaeus, Gambierdiscus carolinianus, Gambierdiscus carpenteri, Gambierdiscus ribotype 2 and Gambierdiscus ruetzleri) using a human erythrocyte lysis assay. In all, 56 isolates were tested. The results showed certain species were significantly more toxic than others. Depending on the species, hemolytic activity consistently increased by ∼7-40% from log phase growth to late log - early stationary growth phase and then declined in mid-stationary growth phase. Increasing growth temperatures from 20 to 31 °C for clones of G. caribaeus showed only a slight increase in hemolytic activity between 20 and 27 °C. Hemolytic activity in the G. carolinianus isolates from different regions grown over the same 20-31 °C range remained constant. These data suggest that growth temperature is not a significant factor in modulating the inter-isolate and interspecific differences in hemolytic activity. The hemolytic activity of various isolates measured repeatedly over a 2 year period remained constant, consistent with the hemolytic compounds being constitutively produced and under strong genetic control. Depending on species, greater than 60-90% of the total hemolytic activity was initially associated with the cell membranes but diffused into solution over a 24 h assay incubation period at 4 °C. These findings suggest that hemolytic compounds produced by Gambierdiscus isolates were held in membrane bound vesicles as reported for brevetoxins produced by Karenia brevis. Gambierdiscus isolates obtained from other parts of the world exhibited hemolytic activities comparable to those found in the Caribbean and Gulf of Mexico confirming the range of toxicities is similar among Gambierdiscus species worldwide. Experiments using specific inhibitors of the MTX pathway and purified MTX, Gambierdiscus whole cell extracts, and hydrophilic cell extracts containing MTX, were consistent with MTX as the primary hemolytic compound produced by Gambierdiscus species. While the results from inhibition studies require validation by LC-MS analysis, the available data strongly suggest differences in hemolytic activity observed in this study reflect maitotoxicity.


Assuntos
Ciguatoxinas/farmacologia , Dinoflagellida/química , Eritrócitos/efeitos dos fármacos , Hemolíticos/farmacologia , Extratos Celulares/farmacologia , Células Cultivadas , Dinoflagellida/crescimento & desenvolvimento , Humanos , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...