Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(12): e82177, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349215

RESUMO

The pre-sensor 1 (PS1) hairpin is found in ring-shaped helicases of the AAA+ family (ATPases associated with a variety of cellular activities) of proteins and is implicated in DNA translocation during DNA unwinding of archaeal mini-chromosome maintenance (MCM) and superfamily 3 viral replicative helicases. To determine whether the PS1 hairpin is required for the function of the eukaryotic replicative helicase, Mcm2-7 (also comprised of AAA+ proteins), we mutated the conserved lysine residue in the putative PS1 hairpin motif in each of the Saccharomyces cerevisiae Mcm2-7 subunits to alanine. Interestingly, only the PS1 hairpin of Mcm3 was essential for viability. While mutation of the PS1 hairpin in the remaining MCM subunits resulted in minimal phenotypes, with the exception of Mcm7 which showed slow growth under all conditions examined, the viable alleles were synthetic lethal with each other. Reconstituted Mcm2-7 containing Mcm3 with the PS1 mutation (Mcm3(K499A)) had severely decreased helicase activity. The lack of helicase activity provides a probable explanation for the inviability of the mcm3(K499A) strain. The ATPase activity of Mcm2-7(3K499A) was similar to the wild type complex, but its interaction with single-stranded DNA in an electrophoretic mobility shift assay and its associations in cells were subtly altered. Together, these findings indicate that the PS1 hairpins in the Mcm2-7 subunits have important and distinct functions, most evident by the essential nature of the Mcm3 PS1 hairpin in DNA unwinding.


Assuntos
DNA Fúngico/metabolismo , Viabilidade Microbiana , Componente 3 do Complexo de Manutenção de Minicromossomo/química , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromatografia em Gel , Cruzamentos Genéticos , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênicos/toxicidade , Mutação/genética , Fenótipo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Relação Estrutura-Atividade , Temperatura
2.
G3 (Bethesda) ; 3(10): 1661-74, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23934994

RESUMO

Mec1, a member of the phosphoinositide three-kinase-related kinase (PIKK) family of proteins, is involved in the response to replicative stress and DNA damage and in telomere maintenance. An essential 30 to 35 residue, the FATC domain is found at the C-terminus of all PIKK family members. To investigate the roles of the C-terminal residues of Mec1, we characterized alleles of Saccharomyces cerevisiae mec1 that alter the FATC domain. A change of the terminal tryptophan to alanine resulted in temperature-sensitive growth, sensitivity to hydroxyurea, and diminished kinase activity in vitro. Addition of a terminal glycine or deletion of one, two, or three residues resulted in loss of cell viability and kinase function. Each of these Mec1 derivatives was less stable than wild-type Mec1, eluted abnormally from a size exclusion column, and showed reduced nuclear localization. We identified rpn3-L140P, which encodes a component of the 19S proteasomal regulatory particle of the 26S proteasome, as a suppressor of the temperature-sensitive growth caused by mec1-W2368A. The rpn3-L140P allele acted in a partially dominant fashion. It was not able to suppress the inviability of the C-terminal truncations or additions or the hydroxyurea sensitivity of mec1-W2368A. The rpn3-L140P allele restored Mec1-W2368A to nearly wild-type protein levels at 37°, an effect partially mimicked by the proteasome inhibitor MG-132. Our study supports a role for the C-terminus in Mec1 folding and stability, and suggests a role for the proteasome in regulating Mec1 levels.


Assuntos
Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Estabilidade Enzimática , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dados de Sequência Molecular , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
3.
BMC Genet ; 13: 36, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22564307

RESUMO

BACKGROUND: The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm) proteins 2 through 7 (Mcm2-7) and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK). In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS) leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. RESULTS: We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA) is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU) and to the base analogue 5-fluorouracil (5-FU) but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE) the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. CONCLUSIONS: Together these observations point to a role for DDK-mediated phosphorylation of Mcm2 in the response to replicative stress, including some forms of DNA damage. We suggest that phosphorylation of Mcm2 modulates Mcm2-7 activity resulting in the stabilization of replication forks in response to replicative stress.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Cafeína/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Proteínas Cromossômicas não Histona/genética , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fluoruracila/farmacologia , Deleção de Genes , Hidroxiureia/farmacologia , Mutação , Estresse Oxidativo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
4.
Nucleic Acids Res ; 39(16): 6998-7008, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21596784

RESUMO

The S-phase kinase, DDK controls DNA replication through phosphorylation of the replicative helicase, Mcm2-7. We show that phosphorylation of Mcm2 at S164 and S170 is not essential for viability. However, the relevance of Mcm2 phosphorylation is demonstrated by the sensitivity of a strain containing alanine at these positions (mcm2(AA)) to methyl methanesulfonate (MMS) and caffeine. Consistent with a role for Mcm2 phosphorylation in response to DNA damage, the mcm2(AA) strain accumulates more RPA foci than wild type. An allele with the phosphomimetic mutations S164E and S170E (mcm2(EE)) suppresses the MMS and caffeine sensitivity caused by deficiencies in DDK function. In vitro, phosphorylation of Mcm2 or Mcm2(EE) reduces the helicase activity of Mcm2-7 while increasing DNA binding. The reduced helicase activity likely results from the increased DNA binding since relaxing DNA binding with salt restores helicase activity. The finding that the ATP site mutant mcm2(K549R) has higher DNA binding and less ATPase than mcm2(EE), but like mcm2(AA) results in drug sensitivity, supports a model whereby a specific range of Mcm2-7 activity is required in response to MMS and caffeine. We propose that phosphorylation of Mcm2 fine-tunes the activity of Mcm2-7, which in turn modulates DNA replication in response to DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Componente 7 do Complexo de Manutenção de Minicromossomo , Fosforilação , Proteína de Replicação A/análise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo
5.
G3 (Bethesda) ; 1(4): 317-25, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22384342

RESUMO

The DDK kinase complex, composed of Cdc7 and Dbf4, is required for S-phase progression. The two component proteins show different degrees of sequence conservation between human and yeast. Here, we determine that Saccharomyces cerevisiae bearing human CDC7 and DBF4 grows comparably to cells with yeast DDK under standard growth conditions. HsDrf1 (a second human Dbf4-like protein) does not support growth, suggesting that HsDbf4 is the true ortholog of ScDbf4. Both human subunits are required to complement yeast cdc7Δ or dbf4Δ due to the inability of human Cdc7 or Dbf4 to interact with the corresponding yeast protein. Flow cytometry indicates normal cell cycle progression for yeast containing human DDK. However, yeast containing human DDK is sensitive to long-term exposure to hydroxyurea and fails to sporulate, suggesting that human DDK substitutes for some, but not all, of yeast DDK's functions. We mapped the region of Cdc7 required for species-specific function of DDK to the C-terminus of Cdc7 by substituting the yeast C-terminal 55 amino acid residues in place of the equivalent human residues. The resulting hybrid protein supported growth of a cdc7Δ strain only in the presence of ScDBF4. The strain supported by the hybrid CDC7 was not sensitive to HU and formed tetrads. Together, our data indicate that DDK's targeting of its essential substrate is conserved between species, whereas the interactions within DDK are species specific.

6.
BMC Biochem ; 11: 37, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20860810

RESUMO

BACKGROUND: Minichromosome maintenance proteins (Mcm) 2, 3, 4, 5, 6 and 7 are related by sequence and form a variety of complexes that unwind DNA, including Mcm4/6/7. A Mcm4/6/7 trimer forms one half of the Mcm2-7 hexameric ring and can be thought of as the catalytic core of Mcm2-7, the replicative helicase in eukaryotic cells. Oligomeric analysis of Mcm4/6/7 suggests that it forms a hexamer containing two Mcm4/6/7 trimers, however, under certain conditions trimeric Mcm4/6/7 has also been observed. The functional significance of the different Mcm4/6/7 oligomeric states has not been assessed. The results of such an assessment would have implications for studies of both Mcm4/6/7 and Mcm2-7. RESULTS: Here, we show that Saccharomyces cerevisiae Mcm4/6/7 reconstituted from individual subunits exists in an equilibrium of oligomeric forms in which smaller oligomers predominate in the absence of ATP. In addition, we found that ATP, which is required for Mcm4/6/7 activity, shifts the equilibrium towards larger oligomers, likely hexamers of Mcm4/6/7. ATPγS and to a lesser extent ADP also shift the equilibrium towards hexamers. Study of Mcm4/6/7 complexes containing mutations that interfere with the formation of inter-subunit ATP sites (arginine finger mutants) indicates that full activity of Mcm4/6/7 requires all of its ATP sites, which are formed in a hexamer and not a trimer. In keeping with this observation, Mcm4/6/7 binds DNA as a hexamer. CONCLUSIONS: The minimal functional unit of Mcm4/6/7 is a hexamer. One of the roles of ATP binding by Mcm4/6/7 may be to stabilize formation of hexamers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Reagentes de Ligações Cruzadas/química , Proteínas de Ligação a DNA/química , Componente 4 do Complexo de Manutenção de Minicromossomo , Componente 6 do Complexo de Manutenção de Minicromossomo , Componente 7 do Complexo de Manutenção de Minicromossomo , Proteínas Nucleares/química , Ligação Proteica , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química
8.
J Mol Biol ; 391(2): 301-13, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19540846

RESUMO

The essential minichromosome maintenance (Mcm) proteins Mcm2 through Mcm7 likely comprise the replicative helicase in eukaryotes. In addition to Mcm2-7, other subcomplexes, including one comprising Mcm4, Mcm6, and Mcm7, unwind DNA. Using Mcm4/6/7 as a tool, we reveal a role for nucleotide binding by Saccharomyces cerevisiae Mcm2 in modulating DNA binding by Mcm complexes. Previous studies have shown that Mcm2 inhibits DNA unwinding by Mcm4/6/7. Here, we show that interaction of Mcm2 and Mcm4/6/7 is not sufficient for inhibition; rather, Mcm2 requires nucleotides for its regulatory role. An Mcm2 mutant that is defective for ATP hydrolysis (K549A), as well as ATP analogues, was used to show that ADP binding by Mcm2 is required to inhibit DNA binding and unwinding by Mcm4/6/7. This Mcm2-mediated regulation of Mcm4/6/7 is independent of Mcm3/5. Furthermore, the importance of ATP hydrolysis by Mcm2 to the regulation of the native complex was apparent from the altered DNA binding properties of Mcm2(KA)-7. Moreover, together with the finding that Mcm2(K549A) does not support yeast viability, these results indicate that the nucleotide-bound state of Mcm2 is critical in regulating the activities of Mcm4/6/7 and Mcm2-7 complexes.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Fúngico/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cromossômicas não Histona , DNA de Cadeia Simples/metabolismo , Proteínas Fúngicas/genética , Hidrólise , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
9.
J Cell Biol ; 169(1): 35-47, 2005 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-15824130

RESUMO

We have dissected specialized assemblies on the Saccharomyces cerevisiae genome that help define and preserve the boundaries that separate silent and active chromatin. These assemblies contain characteristic stretches of DNA that flank particular regions of silent chromatin, as well as five distinctively modified histones and a set of protein complexes. The complexes consist of at least 15 chromatin-associated proteins, including DNA pol epsilon, the Isw2-Itc1 and Top2 chromatin remodeling proteins, the Sas3-Spt16 chromatin modifying complex, and Yta7, a bromodomain-containing AAA ATPase. We show that these complexes are important for the faithful maintenance of an established boundary, as disruption of the complexes results in specific, anomalous alterations of the silent and active epigenetic states.


Assuntos
Cromatina/metabolismo , Replicação do DNA/fisiologia , Inativação Gênica/fisiologia , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Replicação do DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Genoma Fúngico , Genômica , Histonas/genética , Substâncias Macromoleculares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
J Biol Chem ; 278(49): 49171-82, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-13679365

RESUMO

Mcm4,6,7 is a ring-shaped heterohexamer and the putative eukaryotic replication fork helicase. In this study, we examine the mechanism of Mcm4,6,7. Mcm4,6,7 binds to only one strand of a duplex during unwinding, corresponding to the leading strand of a replication fork. Mcm4,6,7 unwinding stops at a nick in either strand. The Mcm4,6,7 ring also actively translocates along duplex DNA, enabling the protein to drive branch migration of Holliday junctions. The Mcm4,6,7 mechanism is very similar to DnaB, except the proteins translocate with opposite polarity along DNA. Mcm4,6,7 and DnaB have different structural folds and evolved independently; thus, the similarity in mechanism is surprising. We propose a "pump in ring" mechanism for both Mcm4,6,7 and DnaB, wherein a single-stranded DNA pump is situated within the central channel of the ring-shaped helicase, and unwinding is the result of steric exclusion. In this example of convergent evolution, the "pump in ring" mechanism was probably selected by eukaryotic and bacterial replication fork helicases in order to restrict unwinding to replication fork structures, stop unwinding when the replication fork encounters a nick, and actively translocate along duplex DNA to accomplish additional activities such as DNA branch migration.


Assuntos
DNA Topoisomerases Tipo I/fisiologia , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/química , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Curr Biol ; 13(15): R594-6, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12906810

RESUMO

Helicase loaders transfer the ring-shaped replicative helicases onto DNA. They assort into two classes: ring breakers, which place stabile hexameric rings on DNA via transient gaps at subunit interfaces; and helicase makers, which assemble hexameric rings around DNA from monomeric helicase units.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/genética , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares
12.
J Biol Chem ; 278(7): 4491-9, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12480933

RESUMO

The Mcm2-7p heterohexamer is the presumed replicative helicase in eukaryotic cells. Each of the six subunits is required for replication. We have purified the six Saccharomyces cerevisiae MCM proteins as recombinant proteins in Escherichia coli and have reconstituted the Mcm2-7p complex from individual subunits. Study of MCM ATPase activity demonstrates that no MCM protein hydrolyzes ATP efficiently. ATP hydrolysis requires a combination of two MCM proteins. The fifteen possible pairwise mixtures of MCM proteins yield only three pairs of MCM proteins that produce ATPase activity. Study of the Mcm3/7p ATPase shows that an essential arginine in Mcm3p is required for hydrolysis of the ATP bound to Mcm7p. Study of the pairwise interactions between MCM proteins connects the remaining MCM proteins to the Mcm3/7p pair. The data predict which subunits in the ATPase pairs bind the ATP that is hydrolyzed and indicate the arrangement of subunits in the Mcm2-7p heterohexamer.


Assuntos
Proteínas Fúngicas/química , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Escherichia coli , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Componente 4 do Complexo de Manutenção de Minicromossomo , Componente 6 do Complexo de Manutenção de Minicromossomo , Componente 7 do Complexo de Manutenção de Minicromossomo , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
13.
Nat Rev Mol Cell Biol ; 3(11): 826-35, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12415300

RESUMO

Clamp loaders are required to load the ring-shaped clamps that tether replicative DNA polymerases onto DNA. Recently solved crystal structures, along with a series of biochemical studies, have provided a detailed understanding of the clamp loading reaction. In particular, studies of the Escherichia coli clamp loader--an AAA+ machine--have provided insights into the architecture of clamp loaders from eukaryotes, bacteriophage T4 and archaea. Other AAA+ proteins are also involved in the initiation of DNA replication, and studies of the E. coli clamp loader indicate mechanisms by which these proteins might function.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Motores Moleculares/fisiologia , Archaea/fisiologia , Proteínas de Bactérias/fisiologia , Bacteriófagos/fisiologia , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/fisiologia , Escherichia coli/fisiologia , Células Eucarióticas/fisiologia , Humanos , Complexo de Reconhecimento de Origem , Estrutura Terciária de Proteína
14.
EMBO J ; 21(12): 3148-59, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12065427

RESUMO

Helicases are transferred to replication origins by helicase loading factors. The Escherichia coli DnaC and eukaryotic Cdc6/18 helicase loaders contain ATP sites and are both members of the AAA+ family. One might expect that ATP is required for helicase loading; however, this study on DnaC illustrates that ATP is not actually needed for DnaC to load helicase onto single-strand DNA (ssDNA). In fact, it seems to be a paradox that after transfer of helicase to DNA, DnaC-ATP inhibits helicase action. In addition, ATP is required for DnaC function at an early step in oriC replication in which ATP stimulates ssDNA binding by DnaC, leading to expansion of the ssDNA bubble at the origin. Two cofactors, ssDNA and DnaB, trigger hydrolysis of ATP, converting DnaC to the ADP form that no longer inhibits DnaB. These observations have led to the idea that DnaC is a 'dual' switch protein, where both the ATP and the ADP forms are sequentially required for replication. This dual switching process may underlie the sensitivity of DnaB to even small fluctuations in DnaC levels.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Sequência de Aminoácidos , Bacteriófagos/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , DnaB Helicases , Proteínas de Escherichia coli/química , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Origem de Replicação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...