Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(6): 1012-1021, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251913

RESUMO

It is becoming clear that every organ is seeded by a population of fetal liver-derived macrophages that are replaced at different rates by monocyte-derived macrophages. Using the Ms4a3tdTomato reporter mouse that reports on monocyte-derived alveolar macrophages (Mo-AMs) and our ability to examine AM function using our multichannel intravital microscopy, we examined the fetal-liver derived alveolar macrophage (FL-AM) and Mo-AM populations within the same mouse under various environmental conditions. The experiments unveiled that AMs migrated from alveolus to alveolus and phagocytosed bacteria identically regardless of ontogenic origin. Using 50 PFU of influenza A virus (IAV) determined using the Madin-Darby canine kidney (MDCK) cell line, we noted that both populations were susceptible to IAV-induced immunoparalysis, which also led to impaired phagocytosis of secondary bacterial infections. Both FL-AMs and Mo-AMs were trained by ß-glucan to resist IAV-induced paralysis. Over time (40 wk), Mo-AMs began to outperform FL-AMs, although both populations were still sensitive to IAV. Our data also show that clodronate depletion of AMs leads to replenishment, but by FL-AMs, and these macrophages do show some functional impairment for a limited time. Overall, the system is designed such that new macrophages rapidly assume the function of tissue-resident macrophages when both populations are examined in an identical environment. These data do differ from artificial depletion methods that compare Mo-AMs and FL-AMs.


Assuntos
Coinfecção , Vírus da Influenza A , Animais , Cães , Camundongos , Pulmão , Macrófagos , Macrófagos Alveolares , Fagocitose , Fígado
2.
JHEP Rep ; 2(4): 100117, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32695965

RESUMO

BACKGROUND & AIMS: The precise determination of non-alcoholic fatty liver disease (NAFLD) onset is challenging. Thus, the initial hepatic responses to fat accumulation, which may be fundamental to our understanding of NAFLD evolution and clinical outcomes, are largely unknown. Herein, we chronologically mapped the immunologic and metabolic changes in the liver during the early stages of fatty liver disease in mice and compared this with human NAFLD samples. METHODS: Liver biopsies from patients with NAFLD (NAFLD activity score [NAS] 2-3) were collected for gene expression profiling. Mice received a high-fat diet for short periods to mimic initial steatosis and the hepatic immune response was investigated using a combination of confocal intravital imaging, gene expression, cell isolation, flow cytometry and bone marrow transplantation assays. RESULTS: We observed major immunologic changes in patients with NAS 2-3 and in mice in the initial stages of NAFLD. In mice, these changes significantly increased mortality rates upon drug-induced liver injury, as well as predisposing mice to bacterial infections. Moreover, deletion of Toll-like receptor 4 in liver cells dampened tolerogenesis, particularly in Kupffer cells, in the initial stages of dietary insult. CONCLUSION: The hepatic immune system acts as a sentinel for early and minor changes in hepatic lipid content, mounting a biphasic response upon dietary insult. Priming of liver immune cells by gut-derived Toll-like receptor 4 ligands plays an important role in liver tolerance in initial phases, but continuous exposure to insults may lead to damage and reduced ability to control infections. LAY SUMMARY: Fatty liver is a very common form of hepatic disease, leading to millions of cases of cirrhosis every year. Patients are often asymptomatic until becoming very sick. Therefore, it is important that we expand our knowledge of the early stages of disease pathogenesis, to enable early diagnosis. Herein, we show that even in the early stages of fatty liver disease, there are significant alterations in genes involved in the inflammatory response, suggesting that the hepatic immune system is disturbed even following minor and undetectable changes in liver fat content. This could have implications for the diagnosis and clinical management of fatty liver disease.

3.
Cell Host Microbe ; 27(5): 752-768.e7, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32298657

RESUMO

The impact of T helper (Th) 1 versus Th2 immunity on intracellular infections is attributed to classical versus alternative activation of macrophages leading to resistance or susceptibility. However, observations in multiple infectious settings demonstrate deficiencies in mediators of Th1-Th2 immunity, which have paradoxical or no impact. We report that prior to influencing activation, Th1/Th2 immunity first controls the size of the permissive host cell reservoir. During early Leishmania infection of the skin, IFN-γ- or STAT6-mediated changes in phagocyte activation were counteracted by changes in IFN-γ-mediated recruitment of permissive CCR2+ monocytes. Monocytes were required for early parasite expansion and acquired an alternatively activated phenotype despite the Th1 dermal environment required for their recruitment. Surprisingly, STAT6 did not enhance intracellular parasite proliferation, but rather modulated the size and permissiveness of the monocytic host cell reservoir via regulation of IFN-γ and IL-10. These observations expand our understanding of the Th1-Th2 paradigm during infection.


Assuntos
Leishmaniose/imunologia , Monócitos/imunologia , Pele/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Feminino , Interferon gama/deficiência , Interferon gama/genética , Interleucina-10/deficiência , Interleucina-10/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL/genética , Camundongos Knockout , Permissividade , Psychodidae , Receptores CCR2/deficiência , Receptores CCR2/genética , Fator de Transcrição STAT6/deficiência , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Replicação Viral
4.
Brain Behav Immun ; 81: 444-454, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271871

RESUMO

The gastrointestinal (GI) tract harbors commensal microorganisms as well as invasive bacteria, toxins and other pathogens and, therefore, plays a pivotal barrier and immunological role against pathogenic agents. The vagus nerve is an important regulator of the GI tract-associated immune system, having profound effects on inflammatory responses. Among GI tract organs, the liver is a key site of immune surveillance, as it has a large population of resident macrophages and receives the blood drained from the guts through the hepatic portal circulation. Although it is widely accepted that the hepatic tissue is a major target for vagus nerve fibers, the role of this neural circuit in liver immune functions is still poorly understood. Herein we used in vivo imaging techniques, including confocal microscopy and scintigraphy, to show that vagus nerve stimulation increases the phagocytosis activity by resident macrophages in the liver, even on the absence of an immune challenge. The activation of this neural circuit in a non-lethal model of sepsis optimized the removal of bacteria in the liver and resulted in the production of anti-inflammatory and pro-regenerative cytokines. Our findings provide new insights into the neural regulation of the immune system in the liver.


Assuntos
Fígado/imunologia , Fagocitose/fisiologia , Nervo Vago/fisiologia , Animais , Citocinas , Feminino , Trato Gastrointestinal , Fígado/patologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Sepse/imunologia , Nervo Vago/patologia , Estimulação do Nervo Vago/métodos
5.
Cells ; 7(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563238

RESUMO

Acetaminophen (APAP) poisoning is one of the leading causes of acute hepatic failure and liver transplantation is often the only lifesaving alternative. During the course of hepatocyte necrosis, an intense accumulation of neutrophils is often observed within the liver microenvironment. Despite the classic idea that neutrophil accumulation in tissues causes collateral tissue damage, there is a growing body of evidence showing that neutrophils can also orchestrate the resolution of inflammation. In this work, drug-induced liver injury was induced by oral administration of APAP and pharmacological intervention was made 12 h after this challenge. Liver injury and repair kinetics were evaluated by a novel combination of enzyme quantifications, ELISA, specific antagonists of neutrophil enzymes and confocal intravital microscopy. We have demonstrated that neutrophil infiltration is not only involved in injury amplification, but also in liver tissue repair after APAP-induced liver injury. In fact, while neutrophil depletion led to reduced hepatic necrosis during APAP poisoning, injury recovery was also delayed in neutropenic mice. The mechanisms underlying the neutrophil reparative role involved rapid degranulation and matrix metalloproteinases (MMPs) activity. Our data highlights the crucial role of neutrophils, in particular for MMPs, in the resolution phase of APAP-induced inflammatory response.

6.
J Hepatol ; 69(6): 1294-1307, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171870

RESUMO

BACKGROUND & AIMS: The liver is the main hematopoietic site in embryos, becoming a crucial organ in both immunity and metabolism in adults. However, how the liver adapts both the immune system and enzymatic profile to challenges in the postnatal period remains elusive. We aimed to identify the mechanisms underlying this adaptation. METHODS: We analyzed liver samples from mice on day 0 after birth until adulthood. Human biopsies from newborns and adults were also examined. Liver immune cells were phenotyped using mass cytometry (CyTOF) and expression of several genes belonging to immune and metabolic pathways were measured. Mortality rate, bacteremia and hepatic bacterial retention after E. coli challenge were analyzed using intravital and in vitro approaches. In a set of experiments, mice were prematurely weaned and the impact on gene expression of metabolic pathways was evaluated. RESULTS: Human and mouse newborns have a sharply different hepatic cellular composition and arrangement compared to adults. We also found that myeloid cells and immature B cells primarily compose the neonatal hepatic immune system. Although neonatal mice were more susceptible to infections, a rapid evolution to an efficient immune response was observed. Concomitantly, newborns displayed a reduction of several macronutrient metabolic functions and the normal expression level of enzymes belonging to lipid and carbohydrate metabolism was reached around the weaning period. Interestingly, early weaning profoundly disturbed the expression of several hepatic metabolic pathways, providing novel insights into how dietary schemes affect the metabolic maturation of the liver. CONCLUSION: In newborns, the immune and metabolic profiles of the liver are dramatically different to those of the adult liver, which can be explained by the differences in the liver cell repertoire and phenotype. Also, dietary and antigen cues may be crucial to guide liver development during the postnatal phase. LAY SUMMARY: Newborns face major challenges in the extra-uterine life. In fact, organs need to modify their cellular composition and gene expression profile in order to adapt to changes in both microbiota and diet throughout life. The liver is interposed between the gastrointestinal system and the systemic circulation, being the destination of all macronutrients and microbial products from the gut. Therefore, it is expected that delicately balanced mechanisms govern the transformation of a neonatal liver to a key organ in adults.


Assuntos
Recém-Nascido , Fígado/imunologia , Fígado/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Biópsia , Infecções por Escherichia coli/imunologia , Feminino , Hepatócitos , Humanos , Metabolismo dos Lipídeos , Fígado/citologia , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/fisiologia , Valor Nutritivo/fisiologia , Fagócitos/imunologia , Células Precursoras de Linfócitos B/imunologia , Desmame
7.
Cells ; 7(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060463

RESUMO

Hepatocytes may rupture after a drug overdose, and their intracellular contents act as damage-associated molecular patterns (DAMPs) that lead to additional leukocyte infiltration, amplifying the original injury. Necrosis-derived DNA can be recognized as a DAMP, activating liver non-parenchymal cells (NPCs). We hypothesized that NPCs react to DNA by releasing interferon (IFN)-1, which amplifies acetaminophen (APAP)-triggered liver necrosis. We orally overdosed different knockout mouse strains to investigate the pathways involved in DNA-mediated amplification of APAP-induced necrosis. Mice were imaged under intravital confocal microscopy to estimate injury progression, and hepatocytes and liver NPCs were differentially isolated for gene expression assays. Flow cytometry (FACS) using a fluorescent reporter mouse estimated the interferon-beta production by liver leukocytes under different injury conditions. We also treated mice with DNase to investigate the role of necrosis DNA signaling in IFN-1 production. Hepatocytes released a large amount of DNA after APAP overdose, which was not primarily sensed by these cells. However, liver NPCs promptly sensed such environmental disturbances and activated several DNA sensing pathways. Liver NPCs synthesized and released IFN-1, which was associated with concomitant hepatocyte necrosis. Ablation of IFN-1 recognition in interferon α/ß receptor (IFNAR-/-) mice delayed APAP-mediated liver necrosis and dampened IFN-1 sensing pathways. We demonstrated a novel loop involving DNA recognition by hepatic NPCs and additional IFN-1 mediated hepatocyte death.

8.
Cell Immunol ; 330: 16-26, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422270

RESUMO

Mammals and microorganisms have evolved a complex and tightly controlled mutual relationship. This interaction grants protection and energy source for the microorganisms, and on the other hand, provides several immunologic, metabolic and physiological advantages for the host. The gastrointestinal tract (GI) harbors the largest bacteria diversity within the body and complex mechanisms control microbiota community under homeostasis. However, once disrupted, microbiota imbalance can lead to overt growth of resident and invasive populations, with potential risk for lethal diseases. In these cases, bacteria might also escape from the intestines and reach different organs through the blood and lymphatic circulation. To control these unwanted conditions, all body tissues are populated with resident macrophages that have the ability to capture and eliminate pathogens, avoiding their dissemination. Here we discuss the different routes for bacterial translocation from the intestinal tract, and how macrophages act in the removal of these microorganisms to prevent systemic infections and restore the homeostasis.


Assuntos
Bactérias/imunologia , Microbioma Gastrointestinal/imunologia , Homeostase/imunologia , Macrófagos/imunologia , Animais , Bactérias/metabolismo , Humanos , Fígado/imunologia , Fígado/microbiologia , Pulmão/imunologia , Pulmão/microbiologia , Modelos Imunológicos , Peritônio/imunologia , Peritônio/microbiologia
9.
Front Immunol ; 9: 3134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30723477

RESUMO

Acetaminophen (APAP) is usually safe when administrated in therapeutic doses; however, APAP overdose can lead to severe liver injury. APAP can cause direct hepatocyte damage, and stimulates an inflammatory response leading to oxidative stress. Supressor of Cytokine Signaling (SOCS) 2 modulates cytokine and growth factor signaling, and plays a role in the regulation of hepatic cellular processes. Our study evaluated the role of SOCS2 in APAP liver injury. The administration of a toxic dose (600 mg/kg) of APAP caused significant liver necrosis in WT mice. In SOCS2-/- mice, there was significantly more necrosis, neutrophil recruitment, and expression of the neutrophil-active chemokine CXCL-1. Expression of proinflammatory cytokines, such as TNF-α and IL-6, was elevated, while expression of anti-inflammatory cytokines, IL-10 and TGF-ß, was diminished. In vitro, SOCS2-/- hepatocytes expressed more p-NF-kB and produced more ROS than WT hepatocytes when exposed to APAP. SOCS2-/- hepatocytes were more sensitive to cell death in the presence of IL-6 and hydrogen peroxide. The administration of catalase in vitro and in vivo resulted in a pronounced reduction of cells/mice death and necrosis in the SOCS2-/- group. We have demonstrated that SOCS2 has a protective role in the liver by controlling pro-oxidative and inflammatory mechanisms induced by APAP.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Imunidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteínas Supressoras da Sinalização de Citocina/genética , Acetaminofen/efeitos adversos , Animais , Biomarcadores , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
10.
Inflamm Res ; 67(1): 77-88, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29032512

RESUMO

OBJECTIVE AND DESIGN: The aim of this study was to investigate the contribution of IL-33/ST2 axis in the onset and progression of acute liver injury using a mice model of drug-induced liver injury (DILI). MATERIAL AND TREATMENTS: DILI was induced by overdose administration of acetaminophen (APAP) by oral gavage in wild-type BALB/c, ST2-deficient mice and in different bone marrow chimeras. Neutrophils were depleted by anti-Ly6G and macrophages with clodronate liposomes (CLL). METHODS: Blood and liver were collected for biochemical, immunologic and genetic analyses. Mice were imaged by confocal intravital microscopy and liver non-parenchymal cells and hepatocytes were isolated for flow cytometry, genetic and immunofluorescence studies. RESULTS: Acetaminophen overdose caused a massive necrosis and accumulation of immune cells within the liver, concomitantly with IL-33 and chemokine release. Liver non-parenchymal cells were the major sensors for IL-33, and amongst them, neutrophils were the major players in amplification of the inflammatory response triggered by IL-33/ST2 signalling pathway. CONCLUSION: Blockage of IL-33/ST2 axis reduces APAP-mediated organ injury by dampening liver chemokine release and activation of resident and infiltrating liver non-parenchymal cells.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Interleucina-33/imunologia , Fígado/imunologia , Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Animais , Transplante de Medula Óssea , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/terapia , DNA/metabolismo , Feminino , Hepatócitos/imunologia , Inflamação/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/sangue , Interleucina-33/genética , Fígado/citologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/imunologia , Transdução de Sinais
11.
Front Immunol ; 8: 1213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033934

RESUMO

The identification of anti-inflammatory mediators can reveal important targetable molecules capable of counterbalancing Trypanosoma cruzi-induced myocarditis. Composed of Ebi3 and IL-27p28 subunits, IL-27 is produced by myeloid cells and is able to suppress inflammation by inducing IL-10-producing Tr1 cells, thus emerging as a potential candidate to ameliorate cardiac inflammation induced by T. cruzi. Although IL-27 has been extensively characterized as a suppressive cytokine that prevents liver immunopathogenesis after T. cruzi infection, the mechanisms underlying its effects on T. cruzi-induced myocarditis remain largely unknown. Here, wild-type (WT) and Ebi3-deficient animals were intraperitoneally infected with trypomastigotes of T. cruzi Y strain and used to evaluate the potential anti-inflammatory properties of Ebi3 during T. cruzi infection. The survival rates of mice were daily recorded, the frequency of inflammatory cells was analyzed by flow cytometry and inflammatory mediators were measured by ELISA, real-time PCR and PCR array. We reported that T. cruzi-induced myocarditis was prevented by Ebi3. Stressors mainly recognized by TLR2 and TLR4 receptors on myeloid cells were essential to trigger IL-27p28 production. In addition, Ebi3 regulated IFN-γ-mediated myocarditis by promoting an anti-inflammatory environment through IL-10, which was most likely produced by Tr1 cells rather than classical regulatory T cells (Tregs), in the heart tissue of T. cruzi-infected animals. Furthermore, in vivo IFN-γ blockade ameliorated the host survival without compromising the parasite control in the bloodstream. In humans, IL-27p28 was correlated with cardiac protection during Chagas disease. Patients with mild clinical forms of the disease produced high levels of IL-27p28, whereas lower levels were found in those with severe forms. In addition, polymorphic sites at Ebi3 gene were associated with severe cardiomyopathy in patients with Chagas disease. Collectively, we describe a novel regulatory mechanism where Ebi3 dampens cardiac inflammation by modulating the overproduction of IFN-γ, the bona fide culprit of Chagas disease cardiomyopathy.

12.
Gastroenterology ; 151(6): 1176-1191, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27569723

RESUMO

BACKGROUND & AIMS: Resident macrophages are derived from yolk sac precursors and seed the liver during embryogenesis. Native cells may be replaced by bone marrow precursors during extensive injuries, irradiation, and infections. We investigated the liver populations of myeloid immune cells and their location, as well as the dynamics of phagocyte repopulation after full depletion. The effects on liver function due to the substitution of original phagocytes by bone marrow-derived surrogates were also examined. METHODS: We collected and analyzed liver tissues from C57BL/6 (control), LysM-EGFP, B6 ACTb-EGFP, CCR2-/-, CD11c-EYFP, CD11c-EYFP-DTR, germ-free mice, CX3CR1gfp/gfp, CX3CR1gpf/wt, and CX3CR1-DTR-EYFP. Liver nonparenchymal cells were immunophenotyped using mass cytometry and gene expression analyses. Kupffer and dendritic cells were depleted from mice by administration of clodronate, and their location and phenotype were examined using intravital microscopy and time-of-flight mass cytometry. Mice were given acetaminophen gavage or intravenous injections of fluorescently labeled Escherichia coli, blood samples were collected and analyzed, and liver function was evaluated. We assessed cytokine profiles of liver tissues using a multiplexed array. RESULTS: Using mass cytometry and gene expression analyses, we identified 2 populations of hepatic macrophages and 2 populations of monocytes. We also identified 4 populations of dendritic cells and 1 population of basophils. After selective depletion of liver phagocytes, intravascular myeloid precursors began to differentiate into macrophages and dendritic cells; dendritic cells migrated out of sinusoids, after a delay, via the chemokine CX3CL1. The cell distribution returned to normal in 2 weeks, but the repopulated livers were unable to fully respond to drug-induced injury or clear bacteria for at least 1 month. This defect was associated with increased levels of inflammatory cytokines, and dexamethasone accelerated the repopulation of liver phagocytes. CONCLUSIONS: In studies of hepatic phagocyte depletion in mice, we found that myeloid precursors can differentiate into liver macrophages and dendritic cells, which each localize to distinct tissue compartments. During replenishment, macrophages acquire the ability to respond appropriately to hepatic injury and to remove bacteria from the blood stream.


Assuntos
Antígenos CD/análise , Células da Medula Óssea/fisiologia , Diferenciação Celular , Fígado/citologia , Fígado/fisiopatologia , Células Mieloides/fisiologia , Acetaminofen , Animais , Células da Medula Óssea/citologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Quimiocina CX3CL1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/química , Imunofenotipagem/métodos , Microscopia Intravital , Lectinas/genética , Fígado/imunologia , Fígado/metabolismo , Macrófagos/química , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microvasos/metabolismo , Monócitos/química , Células Mieloides/química , Fenótipo , Transcriptoma
13.
Mediators Inflamm ; 2015: 523418, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999668

RESUMO

Cocaine is a commonly abused illicit drug that causes significant morbidity and mortality. The most severe and common complications are seizures, ischemic strokes, myocardial infarction, and acute liver injury. Here, we demonstrated that acute cocaine intoxication promoted seizure along with acute liver damage in mice, with intense inflammatory infiltrate. Considering the protective role of the endocannabinoid system against cell toxicity, we hypothesized that treatment with an anandamide hydrolysis inhibitor, URB597, or with a phytocannabinoid, cannabidiol (CBD), protects against cocaine toxicity. URB597 (1.0 mg/kg) abolished cocaine-induced seizure, yet it did not protect against acute liver injury. Using confocal liver intravital microscopy, we observed that CBD (30 mg/kg) reduced acute liver inflammation and damage induced by cocaine and prevented associated seizure. Additionally, we showed that previous liver damage induced by another hepatotoxic drug (acetaminophen) increased seizure and lethality induced by cocaine intoxication, linking hepatotoxicity to seizure dynamics. These findings suggest that activation of cannabinoid system may have protective actions on both liver and brain induced by cocaine, minimizing inflammatory injury promoted by cocaine, supporting its further clinical application in the treatment of cocaine abuse.


Assuntos
Acetaminofen/farmacologia , Canabidiol/uso terapêutico , Cocaína/toxicidade , Fígado/efeitos dos fármacos , Fígado/imunologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Alanina Transaminase/metabolismo , Animais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Camundongos
14.
Hepatology ; 61(1): 348-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24824608

RESUMO

UNLABELLED: Drug-induced liver injury (DILI) is an important cause of acute liver failure, with limited therapeutic options. During DILI, oncotic necrosis with concomitant release and recognition of intracellular content amplifies liver inflammation and injury. Among these molecules, self-DNA has been widely shown to trigger inflammatory and autoimmune diseases; however, whether DNA released from damaged hepatocytes accumulates into necrotic liver and the impact of its recognition by the immune system remains elusive. Here we show that treatment with two different hepatotoxic compounds (acetaminophen and thioacetamide) caused DNA release into the hepatocyte cytoplasm, which occurred in parallel with cell death in vitro. Administration of these compounds in vivo caused massive DNA deposition within liver necrotic areas, together with an intravascular DNA coating. Using confocal intravital microscopy, we revealed that liver injury due to acetaminophen overdose led to a directional migration of neutrophils to DNA-rich areas, where they exhibit an active patrolling behavior. DNA removal by intravenous DNASE1 injection or ablation of Toll-like receptor 9 (TLR9)-mediated sensing significantly reduced systemic inflammation, liver neutrophil recruitment, and hepatotoxicity. Analysis of liver leukocytes by flow cytometry revealed that emigrated neutrophils up-regulated TLR9 expression during acetaminophen-mediated necrosis, and these cells sensed and reacted to extracellular DNA by activating the TLR9/NF-κB pathway. Likewise, adoptive transfer of wild-type neutrophils to TLR9(-/-) mice reversed the hepatoprotective phenotype otherwise observed in TLR9 absence. CONCLUSION: Hepatic DNA accumulation is a novel feature of DILI pathogenesis. Blockage of DNA recognition by the innate immune system may constitute a promising therapeutic venue.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , DNA/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Animais , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptor Toll-Like 9/metabolismo
15.
Inflamm Res ; 63(1): 61-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24100592

RESUMO

OBJECTIVE: Interleukin-4 (IL-4) is a multifunctional cytokine involved in many diseases such as autoimmune hepatitis and idiosyncratic drug reactions. However, its role in acetaminophen (APAP)-induced liver injury remains unclear. Our objective was to evaluate the contribution of IL-4 to the pathogenesis of APAP-induced liver injury. METHODS: Balb/C (WT) and IL-4 knockout (IL-4(-/-)) mice were orally overdosed with APAP. After 24 h, survival percentage, biochemical and morphological markers of liver injury, and tissue inflammation were assessed. RESULTS: IL-4(-/-) mice were protected from APAP toxicity. Intravital confocal microscopy, tissue histology and serum ALT levels showed significantly less liver injury and inflammation than in the WT group, which may explain the increased survival rate of IL-4(-/-) mice. In addition, IL-4(-/-) mice had decreased production of tumor necrosis factor α, CXCL1 and interleukin-1ß in the liver, but not in a remote site such as the lungs. Hepatic macrophage activation was markedly reduced in IL-4-deficient mice. In addition, glutathione depletion-a primary cause of APAP-mediated injury-was significantly attenuated in IL-4(-/-) mice. CONCLUSIONS: Taken together, our data demonstrate that IL-4(-/-) mice are protected from APAP-induced liver injury due to reduced depletion of glutathione, which prevented liver damage and tissue inflammation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Glutationa/imunologia , Interleucina-4/imunologia , Acetaminofen , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Quimiocina CXCL1/imunologia , Inflamação/imunologia , Interleucina-4/genética , Fígado/imunologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...