Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782713

RESUMO

Recent research has shown the potential of yeast-based biosensors (YBBs) for point-of-use detection of pathogens and target molecules in saliva, blood, and urine samples. The choice of output can greatly affect the sensitivity, dynamic range, detection time, and ease-of-use of a sensor. For visual detection without the need for additional reagents or machinery, colorimetric outputs have shown great potential. Here, we evaluated the inducible generation of prodeoxyviolacein and proviolacein as colorimetric YBB outputs and benchmarked these against lycopene. The outputs were induced via the yeast mating pathway and were compared on agar plates, in liquid culture, and on paper slips. We found that all three outputs produced comparable pigment intensity on agar plates, making them applicable for bioengineering settings. In liquid media and on paper slips, lycopene resulted in a higher intensity pigment and a decreased time-of-detection.

2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542224

RESUMO

Regulation of mRNA translation is a crucial step in controlling gene expression in stressed cells, impacting many pathologies, including heart ischemia. In recent years, ribosome heterogeneity has emerged as a key control mechanism driving the translation of subsets of mRNAs. In this study, we investigated variations in ribosome composition in human cardiomyocytes subjected to endoplasmic reticulum stress induced by tunicamycin treatment. Our findings demonstrate that this stress inhibits global translation in cardiomyocytes while activating internal ribosome entry site (IRES)-dependent translation. Analysis of translating ribosome composition in stressed and unstressed cardiomyocytes was conducted using mass spectrometry. We observed no significant changes in ribosomal protein composition, but several mitochondrial ribosomal proteins (MRPs) were identified in cytosolic polysomes, showing drastic variations between stressed and unstressed cells. The most notable increase in polysomes of stressed cells was observed in MRPS15. Its interaction with ribosomal proteins was confirmed by proximity ligation assay (PLA) and immunoprecipitation, suggesting its intrinsic role as a ribosomal component during stress. Knock-down or overexpression experiments of MRPS15 revealed its role as an activator of IRES-dependent translation. Furthermore, polysome profiling after immunoprecipitation with anti-MRPS15 antibody revealed that the "MRPS15 ribosome" is specialized in translating mRNAs involved in the unfolded protein response.


Assuntos
Miócitos Cardíacos , Proteínas Ribossômicas , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Miócitos Cardíacos/metabolismo , Ribossomos/metabolismo , Polirribossomos/metabolismo , Citosol/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas
3.
ACS Synth Biol ; 12(8): 2278-2289, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37486333

RESUMO

Directed evolution is a preferred strategy to improve the function of proteins such as enzymes that act as bottlenecks in metabolic pathways. Common directed evolution approaches rely on error-prone PCR-based libraries where the number of possible variants is usually limited by cellular transformation efficiencies. Targeted in vivo mutagenesis can advance directed evolution approaches and help to overcome limitations in library generation. In the current study, we aimed to develop a high-efficiency time-controllable targeted mutagenesis toolkit in the yeast Saccharomyces cerevisiae by employing the CRISPR/Cas9 technology. To that end, we fused the dCas9 protein with hyperactive variants of adenine and cytidine deaminases aiming to create an inducible CRISPR-based mutagenesis tool targeting a specific DNA sequence in vivo with extended editing windows and high mutagenesis efficiency. We also investigated the effect of guide RNA multiplexing on the mutagenesis efficiency both phenotypically and on the DNA level.


Assuntos
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistemas CRISPR-Cas/genética , Mutagênese/genética , Mutagênese Sítio-Dirigida , Edição de Genes
4.
ACS Synth Biol ; 12(8): 2271-2277, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37486342

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, with its ability to target a specific DNA locus using guide RNAs (gRNAs), is particularly suited for targeted mutagenesis. The targeted diversification of nucleotides in Saccharomyces cerevisiae using a CRISPR-guided error-prone DNA polymerase─called yEvolvR─was recently reported. Here, we investigate the effect of multiplexed expression of gRNAs flanking a short stretch of DNA on reversion and mutation frequencies using yEvolvR. Phenotypic assays demonstrate that higher reversion frequencies are observed when expressing multiple gRNAs simultaneously. Next generation sequencing reveals a synergistic effect of multiple gRNAs on mutation frequencies, which is more pronounced in a mutant with a partially defective DNA mismatch repair system. Additionally, we characterize a galactose-inducible yEvolvR, which enables temporal control of mutagenesis. This study demonstrates that multiplex expression of gRNAs and induction of mutagenesis greatly improves the capabilities of yEvolvR for generation of genetic libraries in vivo.


Assuntos
Taxa de Mutação , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , DNA , DNA Polimerase Dirigida por DNA/genética , RNA , Mutação
5.
Elife ; 112022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36546462

RESUMO

Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here, we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.


Assuntos
RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Paraspeckles , Transativadores/metabolismo , Polirribossomos/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Biossíntese de Proteínas
6.
ACS Synth Biol ; 11(10): 3182-3189, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36223492

RESUMO

The heterodimeric transcription factor, hypoxia inducible factor-1 (HIF-1), is an important anticancer target as it supports the adaptation and response of tumors to hypoxia. Here, we optimized the repressed transactivator yeast two-hybrid system to further develop it as part of a versatile yeast-based drug discovery platform and validated it using HIF-1. We demonstrate both fluorescence-based and auxotrophy-based selections that could detect HIF-1α/HIF-1ß dimerization inhibition. The engineered genetic selection is tunable and able to differentiate between strong and weak interactions, shows a large dynamic range, and is stable over different growth phases. Furthermore, we engineered mechanisms to control for cellular activity and off-target drug effects. We thoroughly characterized all parts of the biosensor system and argue this tool will be generally applicable to a wide array of protein-protein interaction targets. We anticipate this biosensor will be useful as part of a drug discovery platform, particularly when screening DNA-encoded new modality drugs.


Assuntos
Técnicas Biossensoriais , Fator 1 Induzível por Hipóxia , Humanos , Hipóxia , Descoberta de Drogas , Transativadores
7.
Nat Commun ; 13(1): 5099, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042233

RESUMO

Design of de novo synthetic regulatory DNA is a promising avenue to control gene expression in biotechnology and medicine. Using mutagenesis typically requires screening sizable random DNA libraries, which limits the designs to span merely a short section of the promoter and restricts their control of gene expression. Here, we prototype a deep learning strategy based on generative adversarial networks (GAN) by learning directly from genomic and transcriptomic data. Our ExpressionGAN can traverse the entire regulatory sequence-expression landscape in a gene-specific manner, generating regulatory DNA with prespecified target mRNA levels spanning the whole gene regulatory structure including coding and adjacent non-coding regions. Despite high sequence divergence from natural DNA, in vivo measurements show that 57% of the highly-expressed synthetic sequences surpass the expression levels of highly-expressed natural controls. This demonstrates the applicability and relevance of deep generative design to expand our knowledge and control of gene expression regulation in any desired organism, condition or tissue.


Assuntos
Genoma , Genômica , DNA/genética , Expressão Gênica , Regulação da Expressão Gênica
8.
Methods Mol Biol ; 2513: 39-57, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35781199

RESUMO

Metabolic engineering of microbial cells is the discipline of optimizing microbial metabolism to enable and improve the production of target molecules ranging from biofuels and chemical building blocks to high-value pharmaceuticals. The advances in genetic engineering have eased the construction of highly engineered microbial strains and the generation of genetic libraries. Intracellular metabolite-responsive biosensors facilitate high-throughput screening of these libraries by connecting the levels of a metabolite of interest to a fluorescence output. Fluorescent-activated cell sorting (FACS) enables the isolation of highly fluorescent single cells and thus genotypes that produce higher levels of the metabolite of interest. Here, we describe a high-throughput screening method for recombinant yeast strain screening based on intracellular biosensors and FACS.


Assuntos
Técnicas Biossensoriais , Engenharia Metabólica , Técnicas Biossensoriais/métodos , Citometria de Fluxo/métodos , Biblioteca Gênica , Ensaios de Triagem em Larga Escala/métodos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
ACS Synth Biol ; 10(12): 3461-3474, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34860007

RESUMO

Standardisation of genetic parts has become a topic of increasing interest over the last decades. The promise of simplifying molecular cloning procedures, while at the same time making them more predictable and reproducible has led to the design of several biological standards, one of which is modular cloning (MoClo). The Yeast MoClo toolkit provides a large library of characterised genetic parts combined with a comprehensive and flexible assembly strategy. Here we aimed to (1) simplify the adoption of the standard by providing a simple design tool for including new parts in the MoClo library, (2) characterise the toolkit further by demonstrating the impact of a BglII site in promoter parts on protein expression, and (3) expand the toolkit to enable efficient construction of gRNA arrays, marker-less integration cassettes and combinatorial libraries. These additions make the toolkit more applicable for common engineering tasks and will further promote its adoption in the yeast biological engineering community.


Assuntos
RNA Guia de Cinetoplastídeos , Saccharomyces cerevisiae , Clonagem Molecular , Biblioteca Gênica , Engenharia Genética/métodos , Genômica , RNA Guia de Cinetoplastídeos/genética , Saccharomyces cerevisiae/genética
10.
Synth Biol (Oxf) ; 6(1): ysab014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712839

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has become a standard tool in many genome engineering endeavors. The endonuclease-deficient version of Cas9 (dCas9) is also a powerful programmable tool for gene regulation. In this study, we made use of Saccharomyces cerevisiae transcription factor (TF) binding data to obtain a better understanding of the interplay between TF binding and binding of dCas9 fused to an activator domain, VPR. More specifically, we targeted dCas9-VPR toward binding sites of Gcr1-Gcr2 and Tye7 present in several promoters of genes encoding enzymes engaged in the central carbon metabolism. From our data, we observed an upregulation of gene expression when dCas9-VPR was targeted next to a TF binding motif, whereas a downregulation or no change was observed when dCas9 was bound on a TF motif. This suggests a steric competition between dCas9 and the specific TF. Integrating TF binding data, therefore, proved to be useful for designing guide RNAs for CRISPR interference or CRISPR activation applications.

11.
SLAS Discov ; 26(5): 581-603, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33834873

RESUMO

The global impact of synthetic biology has been accelerating, because of the plummeting cost of DNA synthesis, advances in genetic engineering, growing understanding of genome organization, and explosion in data science. However, much of the discipline's application in the pharmaceutical industry remains enigmatic. In this review, we highlight recent examples of the impact of synthetic biology on target validation, assay development, hit finding, lead optimization, and chemical synthesis, through to the development of cellular therapeutics. We also highlight the availability of tools and technologies driving the discipline. Synthetic biology is certainly impacting all stages of drug discovery and development, and the recognition of the discipline's contribution can further enhance the opportunities for the drug discovery and development value chain.


Assuntos
Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Biologia Sintética/métodos , Desenvolvimento de Medicamentos/tendências , Descoberta de Drogas/tendências , Humanos , Biologia Sintética/tendências
12.
Cancers (Basel) ; 13(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573286

RESUMO

Lymphedema is a disorder of the lymphatic vascular system characterized by impaired lymphatic return resulting in swelling of the extremities and accumulation of undrained interstitial fluid/lymph that results in fibrosis and adipose tissue deposition in the limb. Whereas it is clearly established that primary lymphedema is sex-linked with an average ratio of one male for three females, the role of female hormones, in particular estrogens, has been poorly explored. In addition, secondary lymphedema in Western countries affects mainly women who developed the pathology after breast cancer and undergo through hormone therapy up to five years after cancer surgery. Although lymphadenectomy is identified as a trigger factor, the effect of co-morbidities associated to lymphedema remains elusive, in particular, estrogen receptor antagonists or aromatase inhibitors. In addition, the role of sex hormones and gender has been poorly investigated in the etiology of the pathology. Therefore, this review aims to recapitulate the effect of sex hormones on the physiology of the lymphatic system and to investigate whetherhormone therapy could promote a lymphatic dysfunction leading to lymphedema.

13.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008641

RESUMO

Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Trombospondina 1/genética , Animais , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas do Citoesqueleto , Progressão da Doença , Feminino , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Nus , Estudos Prospectivos , Proteínas de Ligação a RNA/genética
14.
PLoS One ; 15(12): e0239882, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332385

RESUMO

Alkane-based biofuels are desirable to produce at a commercial scale as these have properties similar to current petroleum-derived transportation fuels. Rationally engineering microorganisms to produce a desirable compound, such as alkanes, is, however, challenging. Metabolic engineers are therefore increasingly implementing evolutionary engineering approaches combined with high-throughput screening tools, including metabolite biosensors, to identify productive cells. Engineering Saccharomyces cerevisiae to produce alkanes could be facilitated by using an alkane-responsive biosensor, which can potentially be developed from the native alkane-sensing system in Yarrowia lipolytica, a well-known alkane-assimilating yeast. This putative alkane-sensing system is, at least, based on three different transcription factors (TFs) named Yas1p, Yas2p and Yas3p. Although this system is not fully elucidated in Y. lipolytica, we were interested in evaluating the possibility of translating this system into an alkane-responsive biosensor in S. cerevisiae. We evaluated the alkane-sensing system in S. cerevisiae by developing one sensor based on the native Y. lipolytica ALK1 promoter and one sensor based on the native S. cerevisiae CYC1 promoter. In both systems, we found that the TFs Yas1p, Yas2p and Yas3p do not seem to act in the same way as these have been reported to do in their native host. Additional analysis of the TFs suggests that more knowledge regarding their mechanism is needed before a potential alkane-responsive sensor based on the Y. lipolytica system can be established in S. cerevisiae.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Yarrowia/genética , Alcanos/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética , Yarrowia/metabolismo
15.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202605

RESUMO

It was thought until the 1990s that the eukaryotic translation machinery was unable to translate a circular RNA. However internal ribosome entry sites (IRESs) and m6A-induced ribosome engagement sites (MIRESs) were discovered, promoting 5' end-independent translation initiation. Today a new family of so-called "noncoding" circular RNAs (circRNAs) has emerged, revealing the pivotal role of 5' end-independent translation. CircRNAs have a strong impact on translational control via their sponge function, and form a new mRNA family as they are translated into proteins with pathophysiological roles. While there is no more doubt about translation of covalently closed circRNA, the linearity of canonical mRNA is only theoretical: it has been shown for more than thirty years that polysomes exhibit a circular form and mRNA functional circularization has been demonstrated in the 1990s by the interaction of initiation factor eIF4G with poly(A) binding protein. More recently, additional mechanisms of 3'-5' interaction have been reported, including m6A modification. Functional circularization enhances translation via ribosome recycling and acceleration of the translation initiation rate. This update of covalently and noncovalently closed circular mRNA translation landscape shows that RNA with circular shape might be the rule for translation with an important impact on disease development and biotechnological applications.


Assuntos
Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Circular/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , Proteínas de Ligação a Poli(A)/metabolismo
16.
Elife ; 82019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31815666

RESUMO

Hypoxia, a major inducer of angiogenesis, triggers major changes in gene expression at the transcriptional level. Furthermore, under hypoxia, global protein synthesis is blocked while internal ribosome entry sites (IRES) allow specific mRNAs to be translated. Here, we report the transcriptome and translatome signatures of (lymph)angiogenic genes in hypoxic HL-1 mouse cardiomyocytes: most genes are induced at the translatome level, including all IRES-containing mRNAs. Our data reveal activation of (lymph)angiogenic factor mRNA IRESs in early hypoxia. We identify vasohibin1 (VASH1) as an IRES trans-acting factor (ITAF) that is able to bind RNA and to activate the FGF1 IRES in hypoxia, but which tends to inhibit several IRESs in normoxia. VASH1 depletion has a wide impact on the translatome of (lymph)angiogenesis genes, suggesting that this protein can regulate translation positively or negatively in early hypoxia. Translational control thus appears as a pivotal process triggering new vessel formation in ischemic heart.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hipóxia/metabolismo , Sítios Internos de Entrada Ribossomal/fisiologia , Miócitos Cardíacos/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , RNA Mensageiro/metabolismo , Motivos de Ligação ao RNA , Transcriptoma
17.
Microb Cell Fact ; 18(1): 205, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767000

RESUMO

BACKGROUND: The sesquiterpenoid abscisic acid (ABA) is mostly known for regulating developmental processes and abiotic stress responses in higher plants. Recent studies show that ABA also exhibits a variety of pharmacological activities. Affordable and sustainable production will be required to utilize the compound in agriculture and as a potential pharmaceutical. Saccharomyces cerevisiae is an established workhorse for the biotechnological production of chemicals. In this study, we constructed and characterised an ABA-producing S. cerevisiae strain using the ABA biosynthetic pathway from Botrytis cinerea. RESULTS: Expression of the B. cinerea genes bcaba1, bcaba2, bcaba3 and bcaba4 was sufficient to establish ABA production in the heterologous host. We characterised the ABA-producing strain further by monitoring ABA production over time and, since the pathway contains two cytochrome P450 enzymes, by investigating the effects of overexpressing the native S. cerevisiae or the B. cinerea cytochrome P450 reductase. Both, overexpression of the native or heterologous cytochrome P450 reductase, led to increased ABA titres. We were able to show that ABA production was not affected by precursor or NADPH supply, which suggested that the heterologous enzymes were limiting the flux towards the product. The B. cinerea cytochrome P450 monooxygenases BcABA1 and BcABA2 were identified as pathway bottlenecks and balancing the expression levels of the pathway enzymes resulted in 4.1-fold increased ABA titres while reducing by-product formation. CONCLUSION: This work represents the first step towards a heterologous ABA cell factory for the commercially relevant sesquiterpenoid.


Assuntos
Ácido Abscísico , Vias Biossintéticas/genética , Botrytis/genética , Reguladores de Crescimento de Plantas/biossíntese , Saccharomyces cerevisiae/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genes Fúngicos , Engenharia Metabólica/métodos , Reguladores de Crescimento de Plantas/genética , Saccharomyces cerevisiae/metabolismo , Transgenes
18.
ACS Synth Biol ; 8(11): 2457-2463, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31577419

RESUMO

Engineering Saccharomyces cerevisiae for industrial-scale production of valuable chemicals involves extensive modulation of its metabolism. Here, we identified novel gene expression fine-tuning set-ups to enhance endogenous metabolic fluxes toward increasing levels of acetyl-CoA and malonyl-CoA. dCas9-based transcriptional regulation was combined together with a malonyl-CoA responsive intracellular biosensor to select for beneficial set-ups. The candidate genes for screening were predicted using a genome-scale metabolic model, and a gRNA library targeting a total of 168 selected genes was designed. After multiple rounds of fluorescence-activated cell sorting and library sequencing, the gRNAs that were functional and increased flux toward malonyl-CoA were assessed for their efficiency to enhance 3-hydroxypropionic acid (3-HP) production. 3-HP production was significantly improved upon fine-tuning genes involved in providing malonyl-CoA precursors, cofactor supply, as well as chromatin remodeling.


Assuntos
Proteína 9 Associada à CRISPR/genética , Carbono/metabolismo , Engenharia Metabólica/métodos , Análise do Fluxo Metabólico/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Técnicas Biossensoriais , Simulação por Computador , Citosol/metabolismo , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Glucose/metabolismo , Malonil Coenzima A/metabolismo , RNA Guia de Cinetoplastídeos/genética , Biologia Sintética/métodos , Transcrição Gênica
19.
ACS Synth Biol ; 8(9): 1968-1975, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31373795

RESUMO

Metabolite biosensors are useful tools for high-throughput screening approaches and pathway regulation approaches. An important feature of biosensors is the dynamic range. To expand the maximum dynamic range of a transcription factor-based biosensor in Saccharomyces cerevisiae, using the fapO/FapR system from Bacillus subtilis as an example case, five native promoters, including constitutive and glucose-regulated ones, were modified. By evaluating different binding site (BS) positions in the core promoters, we identified locations that resulted in a high maximum dynamic range with low expression under repressed conditions. We further identified BS positions in the upstream element region of the TEF1 promoter that did not influence the native promoter strength but resulted in repression in the presence of a chimeric repressor consisting of FapR and the yeast repressor Mig1. These modified promoters with broad dynamic ranges will provide useful information for the engineering of future biosensors and their use in complex genetic circuits.


Assuntos
Proteínas de Bactérias/genética , Técnicas Biossensoriais/métodos , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Engenharia Metabólica , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
20.
ACS Synth Biol ; 8(8): 1788-1800, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31314504

RESUMO

Fatty acid-derived compounds have a range of industrial applications, from chemical building blocks to biofuels. Due to the highly dynamic nature of fatty acid metabolism, it is difficult to identify genes modulating fatty acyl-CoA levels using a rational approach. Metabolite biosensors can be used to screen genes from large-scale libraries in vivo in a high throughput manner. Here, a fatty acyl-CoA sensor based on the transcription factor FadR from Escherichia coli was established in Saccharomyces cerevisiae and combined with a gene overexpression library to screen for genes increasing the fatty acyl-CoA pool. Fluorescence-activated cell sorting, followed by data analysis, identified genes enhancing acyl-CoA levels. From these, overexpression of RTC3, GGA2, and LPP1 resulted in about 80% increased fatty alcohol levels. Changes in fatty acid saturation and chain length distribution could also be observed. These results indicate that the use of this acyl-CoA biosensor combined with a gene overexpression library allows for identification of gene targets improving production of fatty acids and derived products.


Assuntos
Acil Coenzima A/metabolismo , Técnicas Biossensoriais/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Escherichia coli/metabolismo , Citometria de Fluxo , Modelos Biológicos , Fosfatidato Fosfatase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...