Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Phys Chem Chem Phys ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804833

RESUMO

The mass accommodation coefficient αM of water on aqueous triethylene glycol droplets was determined for water mole fractions in the range xmol = 0.1-0.93 and temperatures between 21 and 26 °C from modulated Mie scattering measurement on single optically-trapped droplets in combination with a kinetic multilayer model. αM reaches minimum values around 0.005 at a critical water concentration of xmol = 0.38, and increases with decreasing water content to a value of ≈0.1 for almost pure triethylene glycol droplets, essentially independent of the temperature. Above xmol = 0.38, αM first increases with increasing water content and then stabilises at a value of ≈0.1 at the lowest temperatures, while at the highest temperature its value remains around 0.005. We analysed the unexpected concentration and temperature dependence with a previously proposed two-step model for mass accommodation which provides concentration and temperature-dependent activation enthalpies and entropies. We suggest that the unexpected minimum in αM at intermediate water concentrations might arise from a more or less saturated hydrogen-bond network that forms at the droplet surface.

2.
Epigenetics Chromatin ; 17(1): 2, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254205

RESUMO

BACKGROUND: Blood homeostasis requires the daily production of millions of terminally differentiated effector cells that all originate from hematopoietic stem cells (HSCs). HSCs are rare and exhibit unique self-renewal and multipotent properties, which depend on their ability to maintain quiescence through ill-defined processes. Defective control of cell cycle progression can eventually lead to bone marrow failure or malignancy. In particular, the molecular mechanisms tying cell cycle re-entry to cell fate commitment in HSCs remain elusive. Previous studies have identified chromatin coordination as a key regulator of differentiation in embryonic stem cells. RESULTS: Here, we utilized genetic inactivation of the chromatin-associated Sin3B protein to manipulate cell cycle control and found dysregulated chromatin accessibility and cell cycle progression in HSCs. Single cell transcriptional profiling of hematopoietic stem and progenitor cells (HSPCs) inactivated for Sin3B reveals aberrant progression through the G1 phase of the cell cycle, which correlates with the engagement of specific signaling pathways, including aberrant expression of cell adhesion molecules and the interferon signaling program in LT-HSCs. In addition, we uncover the Sin3B-dependent accessibility of genomic elements controlling HSC differentiation, which points to cell cycle progression possibly dictating the priming of HSCs for differentiation. CONCLUSIONS: Our findings provide new insights into controlled cell cycle progression as a potential regulator of HSC lineage commitment through the modulation of chromatin features.


Assuntos
Cromatina , Células-Tronco Embrionárias , Animais , Camundongos , Ciclo Celular/genética , Diferenciação Celular , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Hematopoéticas , Proteínas Repressoras/metabolismo , Histona Desacetilases/metabolismo
3.
Nature ; 622(7981): 120-129, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674083

RESUMO

Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.


Assuntos
Astrócitos , Sistema Nervoso Central , Ácido Glutâmico , Transdução de Sinais , Adulto , Humanos , Astrócitos/classificação , Astrócitos/citologia , Astrócitos/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Cálcio/metabolismo , Exocitose , Análise da Expressão Gênica de Célula Única , Proteína Vesicular 1 de Transporte de Glutamato/deficiência , Proteína Vesicular 1 de Transporte de Glutamato/genética , Deleção de Genes , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo
4.
Mol Cancer Res ; 21(9): 947-957, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314748

RESUMO

Transcription and DNA damage repair act in a coordinated manner. The scaffolding protein SIN3B serves as a transcriptional co-repressor of hundreds of cell cycle-related genes. However, the contribution of SIN3B during the DNA damage response remains unknown. Here, we show that SIN3B inactivation delays the resolution of DNA double-strand breaks and sensitizes cancer cells to DNA-damaging agents, including the chemotherapeutic drugs cisplatin and doxorubicin. Mechanistically, SIN3B is rapidly recruited to DNA damage sites where it directs the accumulation of Mediator of DNA Damage Checkpoint 1 (MDC1). In addition, we show that SIN3B inactivation favors the engagement of the alternative nonhomologous end joining (NHEJ) repair pathway over the canonical NHEJ. Altogether, our findings impute an unexpected function for the transcriptional co-repressor SIN3B as a gatekeeper of genomic integrity and a determining factor in the DNA repair choice pathway, and point to the inhibition of the SIN3B chromatin-modifying complex as a novel therapeutic vulnerability in cancer cells. IMPLICATIONS: Identifying SIN3B as a modulator of DNA damage repair choice provides novel potential therapeutic avenues to sensitize cancer cells to cytotoxic therapies.


Assuntos
Cromatina , Neoplasias , Humanos , Dano ao DNA , Reparo do DNA , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Proteínas Correpressoras , Apoptose , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
Environ Sci Atmos ; 3(4): 695-707, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37063943

RESUMO

Sea salt aerosol is among the most abundant aerosol species in Earth's atmosphere, and its hygroscopicity is an important parameter to quantify its interaction with solar radiation. Conflicting values for the hygroscopic growth have been reported in the literature, which decreases the accuracy with which their impact on Earth's climate can be modelled. Here we report new values of the hygroscopic growth for a selection of salt compositions representative of atmospheric sea salt. These values are obtained from single optically trapped aqueous droplets with dry radii between 0.3 and 2 µm, using a recently developed method for single particle mass measurement in an optical trap. We compare our results to earlier studies and propose a way to reconcile the apparent discrepancies found in the literature. Within our studies, we also observe the crystallization of CaSO4·2H2O (Gypsum) during the drying of optically trapped sea salt droplets at significantly larger relative humidity of 65-68% than the main efflorescence relative humidity at 50%. This preceding transition occurred in the absence of any contact of the particle with a surface.

6.
bioRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36747851

RESUMO

To maintain blood homeostasis, millions of terminally differentiated effector cells are produced every day. At the apex of this massive and constant blood production lie hematopoietic stem cells (HSCs), a rare cell type harboring unique self-renewal and multipotent properties. A key feature of HSCs is their ability to temporarily exit the cell cycle in a state termed quiescence. Defective control of cell cycle progression can eventually lead to bone marrow failure or malignant transformation. Recent work in embryonic stem cells has suggested that cells can more robustly respond to differentiation cues in the early phases of the cell cycle, owing to a discrete chromatin state permissive to cell fate commitment. However, the molecular mechanisms tying cell cycle re-entry to cell fate commitment in adult stem cells such as HSCs remain elusive. Here, we report that the chromatin-associated Sin3B protein is necessary for HSCs' commitment to differentiation, but dispensable for their self-renewal or survival. Transcriptional profiling of hematopoietic stem and progenitor cells (HSPCs) genetically inactivated for Sin3B at the single cell level reveals aberrant cell cycle gene expression, correlating with the defective engagement of discrete signaling programs. In particular, the loss of Sin3B in the hematopoietic compartment results in aberrant expression of cell adhesion molecules and essential components of the interferon signaling cascade in LT-HSCs. Finally, chromatin accessibility profiling in LT-HSCs suggests a link between Sin3B-dependent cell cycle progression and priming of hematopoietic stem cells for differentiation. Together, these results point to controlled progression through the G1 phase of the cell cycle as a likely regulator of HSC lineage commitment through the modulation of chromatin features.

7.
Oncogene ; 41(38): 4361-4370, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953598

RESUMO

The acquisition of novel detrimental cellular properties following exposure to cytotoxic drugs leads to aggressive and metastatic tumors that often translates into an incurable disease. While the bulk of the primary tumor is eliminated upon exposure to chemotherapeutic treatment, residual cancer cells and non-transformed cells within the host can engage a stable cell cycle exit program named senescence. Senescent cells secrete a distinct set of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). Upon exposure to the SASP, cancer cells undergo cellular plasticity resulting in increased proliferation, migration and epithelial-to-mesenchymal transition. The molecular mechanisms by which the SASP regulates these pro-tumorigenic features are poorly understood. Here, we report that breast cancer cells exposed to the SASP strongly upregulate Lipocalin-2 (LCN2). Furthermore, we demonstrate that LCN2 is critical for SASP-induced increased migration in breast cancer cells, and its inactivation potentiates the response to chemotherapeutic treatment in mouse models of breast cancer. Finally, we show that neoadjuvant chemotherapy treatment leads to LCN2 upregulation in residual human breast tumors, and correlates with worse overall survival. These findings provide the foundation for targeting LCN2 as an adjuvant therapeutic approach to prevent the emergence of aggressive tumors following chemotherapy.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinogênese , Ciclo Celular , Senescência Celular/genética , Feminino , Humanos , Lipocalina-2/genética , Camundongos
8.
J Phys Chem A ; 126(27): 4456-4464, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35767023

RESUMO

It has recently been reported that reactions can occur faster in microdroplets than in extended condensed matter. The electric charge of droplets has also been suggested as a possible cause of this phenomenon. Here, we investigate the influence of electric charges on the photodegradation of single, optically trapped oleic acid aerosol droplets in the absence of other reactive species. The temporal evolution of the chemical composition and the size of droplets with charge states ranging from 0 to 104 elementary charges were retrieved from Raman spectra and elastic light scattering, respectively. No influence of the droplet charge was observed, either on the chemical composition or on the kinetics. Based on a kinetic multilayer model, we propose a reaction mechanism with the photoexcitation of oleic acid into an excited state, subsequent decay into intermediates and further photoexcitation of intermediates and their decay into nonvolatile and volatile products.

9.
Curr Opin Genet Dev ; 74: 101914, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500379

RESUMO

Cancer cell dormancy has emerged as an important nongenetic driver of drug resistance. Dormant cells are characterized by a reversible cell cycle exit. They represent a reservoir for eventual cancer relapse, and upon reactivation, can fuel metastatic disease. Although dormant cells were originally believed to emerge from a drug-resistant pre-existing cancer subpopulation, this notion has been recently challenged. Here, we review recent evidence indicating that dormancy represents an adaptive strategy employed by cancer cells to avoid the cytotoxic effects of antitumor therapy. Furthermore, we outline the molecular pathways engaged by cancer cells to enter dormancy upon drug exposure, with a focus on cellular senescence as a driver of dormancy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/genética
10.
Science ; 376(6590): 293-296, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420964

RESUMO

Optical confinement (OC) structures the optical field and amplifies light intensity inside atmospheric aerosol particles, with major consequences for sunlight-driven aerosol chemistry. Although theorized, the OC-induced spatial structuring has so far defied experimental observation. Here, x-ray spectromicroscopic imaging complemented by modeling provides direct evidence for OC-induced patterning inside photoactive particles. Single iron(III)-citrate particles were probed using the iron oxidation state as a photochemical marker. Based on these results, we predict an overall acceleration of photochemical reactions by a factor of two to three for most classes of atmospheric aerosol particles. Rotation of free aerosol particles and intraparticle molecular transport generally accelerate the photochemistry. Given the prevalence of OC effects, their influence on aerosol particle photochemistry should be considered by atmospheric models.

11.
Sci Total Environ ; 830: 154715, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337864

RESUMO

The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail. We investigated the membrane lipids composition (UPLC-HRMS/MS) and dominant anammox populations (16S rRNA gene amplicon sequencing, Fluorescence in situ hybridization) in 14 anammox enrichments cultivated at 10-37 °C. "Candidatus Brocadia" appeared to be the dominant organism in all but two laboratory enrichments of "Ca. Scalindua" and "Ca. Kuenenia". At lower temperatures, the membranes of all anammox populations were composed of shorter [5]-ladderane ester (reduced chain length demonstrated by decreased fraction of C20/(C18 + C20)). This confirmed the previous preliminary evidence on the prominent role of this ladderane fatty acid in low-temperature adaptation. "Ca. Scalindua" and "Ca. Kuenenia" had distinct profile of ladderane lipids compared to "Ca. Brocadia" biomasses with potential implications for adaptability to low temperatures. "Ca. Brocadia" membranes contained a much lower amount of C18 [5]-ladderane esters than reported in the literature for "Ca. Scalindua" at similar temperature and measured here, suggesting that this could be one of the reasons for the dominance of "Ca. Scalindua" in cold marine environments. Furthermore, we propose additional and yet unreported mechanisms for low-temperature adaptation of anammox bacteria, one of which involves ladderanes with absent phosphatidyl headgroup. In sum, we deepen the understanding of cold anammox physiology by providing for the first time a consistent comparison of anammox-based communities across multiple environments.


Assuntos
Oxidação Anaeróbia da Amônia , Bactérias , Anaerobiose , Hibridização in Situ Fluorescente , Lipídeos de Membrana , Oxirredução , RNA Ribossômico 16S/genética , Temperatura
12.
J Hazard Mater ; 424(Pt C): 127407, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34629195

RESUMO

Antibiotic resistance (AR) is a global problem requiring international cooperation and coordinated action. Global monitoring must rely on methods available and comparable across nations to quantify AR occurrence and identify sources and reservoirs, as well as paths of AR dissemination. Numerous analytical tools that are gaining relevance in microbiology, have the potential to be applied to AR research. This review summarizes the state of the art of AR monitoring methods, considering distinct needs, objectives and available resources. Based on the overview of distinct approaches that are used or can be adapted to monitor AR, it is discussed the potential to establish reliable and useful monitoring schemes that can be implemented in distinct contexts. This discussion places the environmental monitoring within the One-Health approach, where two types of risk, dissemination across distinct environmental compartments, and transmission to humans, must be considered. The plethora of methodological approaches to monitor AR and the variable features of the monitored sites challenge the capacity of the scientific community and policy makers to reach a common understanding. However, the dialogue between different methods and the production of action-oriented data is a priority. The review aims to warm up this discussion.


Assuntos
Saúde Única , Águas Residuárias , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Genes Bacterianos , Humanos
13.
Front Oncol ; 11: 747822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621683

RESUMO

Senescent cells are found to accumulate in aged individuals, as well as in cancer patients that receive chemotherapeutic treatment. Although originally believed to halt cancer progression due to their characteristic growth arrest, senescent cells remain metabolically active and secrete a combination of inflammatory agents, growth factors and proteases, collectively known as the senescence-associated secretory phenotype (SASP). In this review, we discuss the contribution of senescent cells to cancer progression through their ability to alter cancer cells' properties and to generate a microenvironment that promotes tumor growth. Furthermore, recent evidence suggests that senescent cells are able resume proliferation and drive cancer relapse, pointing to the use of senolytics and SASP modulators as a potential approach to prevent tumor resurgence following treatment cessation. Thus, a better understanding of the hallmarks of senescence and the impact of the SASP will allow the development of improved targeted therapeutic strategies to leverage vulnerabilities associated with this cellular state.

14.
Circulation ; 144(1): 52-73, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34078089

RESUMO

BACKGROUND: Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS: We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS: SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS: All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/biossíntese , Terapia Genética/métodos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/terapia , Complexo Correpressor Histona Desacetilase e Sin3/biossíntese , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Metilação , Camundongos , Hipertensão Arterial Pulmonar/genética , Ratos , Ratos Sprague-Dawley , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo
15.
Acad Med ; 96(4): 518-521, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464738

RESUMO

PROBLEM: Physician-scientists are individuals trained in both clinical practice and scientific research. Often, the goal of physician-scientist training is to address pressing questions in biomedical research. The established pathways to formally train such individuals are mainly MD-PhD programs and physician-scientist track residencies. Although graduates of these pathways are well equipped to be physician-scientists, numerous factors, including funding and length of training, discourage application to such programs and impede success rates. APPROACH: To address some of the pressing challenges in training and retaining burgeoning physician-scientists, New York University Grossman School of Medicine formed the Accelerated MD-PhD-Residency Pathway in 2016. This pathway builds on the previously established accelerated 3-year MD pathway to residency at the same institution. The Accelerated MD-PhD-Residency Pathway conditionally accepts MD-PhD trainees to a residency position at the same institution through the National Resident Matching Program. OUTCOMES: Since its inception, 2 students have joined the Accelerated MD-PhD-Residency Pathway, which provides protected research time in their chosen residency. The pathway reduces the time to earn an MD and PhD by 1 year and reduces the MD training phase to 3 years, reducing the cost and lowering socioeconomic barriers. Remaining at the same institution for residency allows for the growth of strong research collaborations and mentoring opportunities, which foster success. NEXT STEPS: The authors and institutional leaders plan to increase the number of trainees who are accepted into the Accelerated MD-PhD-Residency Pathway and track the success of these students through residency and into practice to determine if the pathway is meeting its goal of increasing the number of practicing physician-scientists. The authors hope this model can serve as an example to leaders at other institutions who may wish to adopt this pathway for the training of their MD-PhD students.


Assuntos
Pesquisa Biomédica/educação , Pesquisa Biomédica/tendências , Educação de Pós-Graduação em Medicina/normas , Educação de Pós-Graduação em Medicina/tendências , Guias como Assunto , Internato e Residência/normas , Internato e Residência/tendências , Adulto , Pesquisa Biomédica/estatística & dados numéricos , Educação de Pós-Graduação em Medicina/estatística & dados numéricos , Feminino , Previsões , Humanos , Internato e Residência/estatística & dados numéricos , Masculino , New York , Adulto Jovem
16.
Bioessays ; 43(2): e2000326, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410192
17.
Heart Rhythm O2 ; 2(6Part A): 642-650, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34988510

RESUMO

BACKGROUND: Evidence to support use of cardiac resynchronization therapy (CRT) among patients with both heart failure (HF) and atrial fibrillation (AF) is largely limited to retrospective or post hoc subanalyses. Data from a prospectively enrolled and contemporary cohort are needed. OBJECTIVE: We aim to better characterize the changes from baseline in HF patients with concomitant AF subsequently implanted with a 2-lead CRT-DX system capable of sensing in the atrium, aggregating diagnostics, and delivering CRT therapy. The primary objective of this study is to evaluate the percentage of all HF subjects with an improvement in a clinical composite score from pre-CRT implant to 12 months. METHODS: The study is a US-based, prospective, observational multicenter clinical trial conducted at up to 50 sites and enrolling approximately 400 subjects with a follow-up period of 1 year. Multiple subject assessments, atrial rhythm status, and device interrogation will be collected at follow-up visits occurring at 3, 6, and 12 months postimplant. RESULTS: A Clinical Events Committee will adjudicate subject HF events, arrhythmia events, death events, and all device-classified ventricular tachycardia and ventricular fibrillation episodes with treatment that are collected throughout the follow-up period. Their decisions are based on independent physician review of the data from sites and device interrogation. CONCLUSION: The BIO-AffectDX study aims to provide further insight into the expected outcomes from CRT treatment in patients with HF and AF.

18.
Am J Respir Crit Care Med ; 203(6): 707-717, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32991815

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is an insidious and fatal interstitial lung disease associated with declining pulmonary function. Accelerated aging, loss of epithelial progenitor cell function and/or numbers, and cellular senescence are implicated in the pathogenies of IPF.Objectives: We sought to investigate the role of alveolar type 2 (AT2) cellular senescence in initiation and/or progression of pulmonary fibrosis and therapeutic potential of targeting senescence-related pathways and senescent cells.Methods: Epithelial cells of 9 control donor proximal and distal lung tissues and 11 IPF fibrotic lung tissues were profiled by single-cell RNA sequencing to assesses the contribution of epithelial cells to the senescent cell fraction for IPF. A novel mouse model of conditional AT2 cell senescence was generated to study the role of cellular senescence in pulmonary fibrosis.Measurements and Main Results: We show that AT2 cells isolated from IPF lung tissue exhibit characteristic transcriptomic features of cellular senescence. We used conditional loss of Sin3a in adult mouse AT2 cells to initiate a program of p53-dependent cellular senescence, AT2 cell depletion, and spontaneous, progressive pulmonary fibrosis. We establish that senescence rather than loss of AT2 cells promotes progressive fibrosis and show that either genetic or pharmacologic interventions targeting p53 activation or senescence block fibrogenesis.Conclusions: Senescence of AT2 cells is sufficient to drive progressive pulmonary fibrosis. Early attenuation of senescence-related pathways and elimination of senescent cells are promising therapeutic approaches to prevent pulmonary fibrosis.


Assuntos
Envelhecimento/patologia , Células Epiteliais Alveolares/patologia , Senescência Celular , Fibrose Pulmonar Idiopática/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
20.
Phys Chem Chem Phys ; 22(27): 15770-15771, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32618979

RESUMO

Correction for 'Assessing relative humidity dependent photoacoustics to retrieve mass accommodation coefficients of single optically trapped aerosol particles' by Matus E. Diveky et al., Phys. Chem. Chem. Phys., 2019, 21, 4721-4731, DOI: .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...