Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 142(7): 927-947, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191732

RESUMO

To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3300 proteins per sample (n = 5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ≥ 2.5 average spectral counts, ≥ 2.0 fold-enrichment, false discovery rate < 0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE ( https://research.bioinformatics.udel.edu/iSyTE/ ), to allow effective visualization of this information and facilitate eye gene discovery.


Assuntos
Oftalmopatias , Epitélio Pigmentado da Retina , Animais , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Espectrometria de Massas em Tandem , Proteoma/genética , Proteoma/metabolismo , Proteômica , Retina/metabolismo , Perfilação da Expressão Gênica , Estudos de Associação Genética
2.
Nucleic Acids Res ; 51(8): 3934-3949, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912080

RESUMO

The RNA exosome is an essential 3' to 5' exoribonuclease complex that mediates degradation, processing and quality control of virtually all eukaryotic RNAs. The nucleolar RNA exosome, consisting of a nine-subunit core and a distributive 3' to 5' exonuclease EXOSC10, plays a critical role in processing and degrading nucleolar RNAs, including pre-rRNA. However, how the RNA exosome is regulated in the nucleolus is poorly understood. Here, we report that the nucleolar ubiquitin-specific protease USP36 is a novel regulator of the nucleolar RNA exosome. USP36 binds to the RNA exosome through direct interaction with EXOSC10 in the nucleolus. Interestingly, USP36 does not significantly regulate the levels of EXOSC10 and other tested exosome subunits. Instead, it mediates EXOSC10 SUMOylation at lysine (K) 583. Mutating K583 impaired the binding of EXOSC10 to pre-rRNAs, and the K583R mutant failed to rescue the defects in rRNA processing and cell growth inhibition caused by knockdown of endogenous EXOSC10. Furthermore, EXOSC10 SUMOylation is markedly reduced in cells in response to perturbation of ribosomal biogenesis. Together, these results suggest that USP36 acts as a SUMO ligase to promote EXOSC10 SUMOylation critical for the RNA exosome function in ribosome biogenesis.


Assuntos
Exorribonucleases , Complexo Multienzimático de Ribonucleases do Exossomo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Humanos , Linhagem Celular
3.
Res Sq ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993571

RESUMO

To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3,300 proteins per sample (n=5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ³2.5 average spectral counts, ³2.0 fold-enrichment, False Discovery Rate <0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), to allow effective visualization of this information and facilitate eye gene discovery.

4.
Ocul Surf ; 28: 58-78, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764654

RESUMO

PURPOSE: Human tears contain abundant, diverse sets of proteins that may serve as biomarkers of ocular surface health. There is a need for reproducible methods that consider multiple factors influencing the tear proteome, in addition to the variable of interest. Here we examined a workflow for proteomic analysis of tear proteins without the need to pool tear samples from multiple individuals, thus allowing for analyses based on individual factors, and increasing opportunities for protein biomarker discovery. METHODS: Tears were collected by Schirmer strip following topical ocular anesthetic application then individually stored at -80 °C prior to processing for proteomics. Tear proteins were extracted from Schirmer strips, digested using suspension trapping spin columns (S-Trap), and labeled with high multiplicity tandem mass tags (TMT). Peptide digests were then extensively fractionated by two-dimensional chromatography and analyzed by mass spectrometry to identify and measure changes in protein abundance in each sample. Analysis of select samples was performed to test protocols and to compare the impact of clinically relevant parameters. To facilitate comparison of separate TMT experiments, common pool samples were included in each TMT instrument run and internal reference scaling (IRS) was performed. RESULTS: Differences in subsets of tear proteins were noted for: geographic site of tear collection, contact lens use, and differences in tear fluid volume among individuals. CONCLUSION: These findings demonstrate that proteomic analysis of human tear proteins can be performed without the need to pool samples, and that development of analytic workflows must consider factors that may affect outcomes in studies focused on diverse clinical samples.


Assuntos
Proteômica , Projetos de Pesquisa , Humanos , Proteômica/métodos , Lágrimas/metabolismo , Proteínas do Olho/metabolismo
5.
Exp Eye Res ; 227: 109358, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572168

RESUMO

The α-crystallin small heat shock proteins contribute to the transparency and refractive properties of the vertebrate eye lens and prevent the protein aggregation that would otherwise produce lens cataracts, the leading cause of human blindness. There are conflicting data in the literature as to what role the α-crystallins may play in early lens development. In this study, we used CRISPR gene editing to produce zebrafish lines with mutations in each of the three α-crystallin genes (cryaa, cryaba and cryabb) to prevent protein production. The absence of each α-crystallin protein was analyzed by mass spectrometry, and lens phenotypes were assessed with differential interference contrast microscopy and histology. Loss of αA-crystallin produced a variety of lens defects with varying severity in larvae at 3 and 4 dpf but little substantial change in normal fiber cell denucleation. Loss of αBa-crystallin produced no substantial lens defects. Our cryabb mutant produced a truncated αBb-crystallin protein and showed no substantial change in lens development. Mutation of each α-crystallin gene did not alter the mRNA levels of the remaining two, suggesting a lack of genetic compensation. These data suggest that αA-crystallin plays some role in lens development, but the range of phenotype severity in null mutants indicates its loss simply increases the chance for defects and that the protein is not essential. Our finding that cryaba and cryabb mutants lack noticeable lens defects is congruent with insubstantial transcript levels for these genes in lens epithelial and fiber cells through five days of development. Future experiments can explore the molecular mechanisms leading to lens defects in cryaa null mutants and the impact of αA-crystallin loss during zebrafish lens aging.


Assuntos
Catarata , Cristalinas , Cristalino , Cadeia A de alfa-Cristalina , alfa-Cristalinas , Animais , Humanos , Peixe-Zebra , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Cadeia A de alfa-Cristalina/metabolismo , Cristalino/metabolismo , Proteínas/metabolismo , Catarata/metabolismo
6.
J Biol Chem ; 298(10): 102434, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041632

RESUMO

Transcription dysregulation is common in sarcomas driven by oncogenic transcription factors. Clear cell sarcoma of soft tissue (CCSST) is a rare sarcoma with poor prognosis presently with no therapy. It is characterized by a balanced t(12;22) (q13;q12) chromosomal translocation, resulting in a fusion of the Ewing's sarcoma gene EWSR1 with activating transcription factor 1 (ATF1) to give an oncogene EWSR1-ATF1. Unlike normal ATF1, whose transcription activity is dependent on phosphorylation, EWSR1-ATF1 is constitutively active to drive ATF1-dependent gene transcription to cause tumorigenesis. No EWSR1-ATF1-targeted therapies have been identified due to the challenges in targeting intracellular transcription factors. Through proteomics screening to identify potential druggable targets for CCSST, we discovered protein arginine methyltransferase 5 (PRMT5) as a novel protein to interact with EWSR1-ATF1. PRMT5 is a type II protein arginine methyltransferase to symmetrically dimethylate arginine residues in substrate proteins to regulate a diverse range of activities including gene transcription, RNA splicing, and DNA repair. We found that PRMT5 enhances EWSR1-ATF1-mediated gene transcription to sustain CCSST cell proliferation. Genetic silencing of PRMT5 in CCSST cells resulted in severely impaired cell proliferation and EWSR1-ATF1-driven transcription. Furthermore, we demonstrate that the clinical-stage PRMT5 inhibitor JNJ-64619178 potently and efficaciously inhibited CCSST cell growth in vitro and in vivo. These results provide new insights into PRMT5 as a transcription regulator and warrant JNJ-64619178 for further clinical development to treat CCSST patients.


Assuntos
Fator 1 Ativador da Transcrição , Proteínas de Fusão Oncogênica , Proteína-Arginina N-Metiltransferases , Proteína EWS de Ligação a RNA , Sarcoma de Células Claras , Neoplasias de Tecidos Moles , Humanos , Fator 1 Ativador da Transcrição/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/metabolismo , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/metabolismo , Transcrição Gênica , Regulação Neoplásica da Expressão Gênica
7.
Sci Rep ; 12(1): 8835, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614104

RESUMO

The microcirculation serves crucial functions in adult heart, distinct from those carried out by epicardial vessels. Microvessels are governed by unique regulatory mechanisms, impairment of which leads to microvessel-specific pathology. There are few treatment options for patients with microvascular heart disease, primarily due to limited understanding of underlying pathology. High throughput mRNA sequencing and protein expression profiling in specific cells can improve our understanding of microvessel biology and disease at the molecular level. Understanding responses of individual microvascular cells to the same physiological or pathophysiological stimuli requires the ability to isolate the specific cell types that comprise the functional units of the microcirculation in the heart, preferably from the same heart, to ensure that different cells have been exposed to the same in-vivo conditions. We developed an integrated process for simultaneous isolation and culture of the main cell types comprising the microcirculation in adult mouse heart: endothelial cells, pericytes, and vascular smooth muscle cells. These cell types were characterized with isobaric labeling quantitative proteomics and mRNA sequencing. We defined microvascular cell proteomes, identified novel protein markers, and confirmed established cell-specific markers. Our results allow identification of unique markers and regulatory proteins that govern microvascular physiology and pathology.


Assuntos
Células Endoteliais , Pericitos , Animais , Células Endoteliais/metabolismo , Camundongos , Microcirculação , Músculo Liso Vascular/metabolismo , Pericitos/metabolismo , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
J Thromb Haemost ; 20(6): 1437-1450, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253976

RESUMO

BACKGROUND: Ex vivo assays of platelet function critically inform mechanistic and clinical hematology studies, where effects of divergent blood processing methods on platelet composition are apparent, but unspecified. OBJECTIVE: Here, we evaluate how different blood anticoagulation options and processing times affect platelet function and protein content ex vivo. METHODS: Parallel blood samples were collected from healthy human donors into sodium citrate, acid citrate dextrose, EDTA or heparin, and processed over an extended time course for functional and biochemical experiments, including platelet proteome quantification with multiplexed tandem mass tag (TMT) labeling and triple quadrupole mass spectrometry (MS). RESULTS: Each anticoagulant had time-dependent effects on platelet function in whole blood. For instance, heparin enhanced platelet agonist reactivity, platelet-monocyte aggregate formation and platelet extracellular vesicle release, while EDTA increased platelet α-granule secretion. Following platelet isolation, TMT-MS quantified 3357 proteins amongst all prepared platelet samples. Altogether, >400 proteins were differentially abundant in platelets isolated from blood processed at 24 h versus 1 h post-phlebotomy, including proteins pertinent to membrane trafficking and exocytosis. Anticoagulant-specific effects on platelet proteomes included increased complement system and decreased α-granule proteins in platelets from EDTA-anticoagulated blood. Platelets prepared from heparinized blood had higher levels of histone and neutrophil-associated proteins in a manner related to neutrophil extracellular trap (NET) formation and platelet:NET interactions in whole blood ex vivo. CONCLUSION: Our results demonstrate that different anticoagulants routinely used for blood collection have varying effects on platelets ex vivo, where methodology-associated alterations in platelet proteome may influence mechanistic, translational and biomarker studies.


Assuntos
Plaquetas , Proteoma , Anticoagulantes/análise , Anticoagulantes/farmacologia , Ácido Edético/análise , Ácido Edético/farmacologia , Heparina/farmacologia , Humanos , Proteoma/análise , Proteoma/farmacologia
9.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34813504

RESUMO

While current thinking posits that insulin signaling to glucose transporter 4 (GLUT4) exocytic translocation and glucose uptake in skeletal muscle and adipocytes is controlled by phosphorylation-based signaling, many proteins in this pathway are acetylated on lysine residues. However, the importance of acetylation and lysine acetyltransferases to insulin-stimulated glucose uptake is incompletely defined. Here, we demonstrate that combined loss of the acetyltransferases E1A binding protein p300 (p300) and cAMP response element binding protein binding protein (CBP) in mouse skeletal muscle caused a complete loss of insulin-stimulated glucose uptake. Similarly, brief (i.e., 1 hour) pharmacological inhibition of p300/CBP acetyltransferase activity recapitulated this phenotype in human and rodent myotubes, 3T3-L1 adipocytes, and mouse muscle. Mechanistically, these effects were due to p300/CBP-mediated regulation of GLUT4 exocytic translocation and occurred downstream of Akt signaling. Taken together, we highlight a fundamental role for acetylation and p300/CBP in the direct regulation of insulin-stimulated glucose transport in skeletal muscle and adipocytes.


Assuntos
Adipócitos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína p300 Associada a E1A/metabolismo , Glucose/metabolismo , Músculo Esquelético , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Feminino , Insulina/metabolismo , Masculino , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo
10.
Invest Ophthalmol Vis Sci ; 62(15): 27, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34964803

RESUMO

Purpose: Exfoliation syndrome (XFS) is a condition characterized by the production of insoluble fibrillar aggregates (exfoliation material; XFM) in the eye and elsewhere. Many patients with XFS progress to exfoliation glaucoma (XFG), a significant cause of global blindness. We used quantitative mass spectrometry to analyze the composition of XFM in lens capsule specimens and in aqueous humor (AH) samples from patients with XFS, patients with XFG and unaffected individuals. Methods: Pieces of lens capsule and samples of AH were obtained with consent from patients undergoing cataract surgery. Tryptic digests of capsule or AH were analyzed by high-performance liquid chromatography-mass spectrometry and relative differences between samples were quantified using the tandem mass tag technique. The distribution of XFM on the capsular surface was visualized by SEM and super-resolution light microscopy. Results: A small set of proteins was consistently upregulated in capsule samples from patients with XFS and patients with XFG, including microfibril components fibrillin-1, latent transforming growth factor-ß-binding protein-2 and latent transforming growth factor-ß-binding protein-3. Lysyl oxidase-like 1, a cross-linking enzyme associated with XFS in genetic studies, was an abundant XFM constituent. Ligands of the transforming growth factor-ß superfamily were prominent, including LEFTY2, a protein best known for its role in establishing the embryonic body axis. Elevated levels of LEFTY2 were also detected in AH from patients with XFG, a finding confirmed subsequently by ELISA. Conclusions: This analysis verified the presence of suspected XFM proteins and identified novel components. Quantitative comparisons between patient samples revealed a consistent XFM proteome characterized by strong expression of fibrillin-1, lysyl oxidase-like-1, and LEFTY2. Elevated levels of LEFTY2 in the AH of patients with XFG may serve as a biomarker for the disease.


Assuntos
Humor Aquoso/metabolismo , Cristalinas/metabolismo , Síndrome de Exfoliação/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Cápsula do Cristalino/metabolismo , Agregados Proteicos/fisiologia , Idoso , Idoso de 80 Anos ou mais , Aminoácido Oxirredutases/metabolismo , Cromatografia Líquida de Alta Pressão , Cristalinas/ultraestrutura , Ensaio de Imunoadsorção Enzimática , Feminino , Fibrilina-1/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Proteínas de Ligação a TGF-beta Latente/metabolismo , Fatores de Determinação Direita-Esquerda/metabolismo , Cápsula do Cristalino/ultraestrutura , Masculino , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade
11.
Exp Eye Res ; 213: 108813, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742692

RESUMO

BACKGROUND: Orbital compartments harbor a variety of tissues that can be independently targeted in a plethora of disorders resulting in sight-threatening risks. Orbital inflammatory disorders (OID) including Graves' ophthalmopathy, sarcoidosis, IgG4 disease, granulomatosis with polyangiitis, and nonspecific orbital inflammation constitute an important cause of pain, diplopia and vision loss. Physical examination, laboratory tests, imaging, and even biopsy are not always adequate to classify orbital inflammation which is frequently deemed "nonspecific". Tear sampling and testing provide a potential "window" to the orbital disease process through a non-invasive technique that allows longitudinal sampling as the disease evolves. Using PubMed/Medline, we identified potentially relevant articles on tear proteomics published in the English language between 1988 and 2021. Of 303 citations obtained, 225 contained empirical data on tear proteins, including 33 publications on inflammatory conditions, 15 in glaucoma, 15 in thyroid eye disease, 1 in sarcoidosis (75) and 2 in uveitis (77,78). Review articles were used to identify an additional 56 relevant articles through citation search. In this review, we provide a short introduction to the potential use of tears as a diagnostic fluid and tool to investigate the mechanism of ocular diseases. A general review of previous tear proteomics studies is also provided, with a focus on Graves' ophthalmopathy (GO), and a discussion of unmet needs in the diagnosis and treatment of orbital inflammatory disease (OID). The review concludes by pointing out current limitations of mass spectrometric analysis of tear proteins and summarizes future needs in the field.


Assuntos
Biomarcadores/metabolismo , Proteínas do Olho/metabolismo , Oftalmopatia de Graves/diagnóstico , Pseudotumor Orbitário/diagnóstico , Lágrimas/metabolismo , Bases de Dados Factuais , Oftalmopatia de Graves/metabolismo , Humanos , Técnicas de Diagnóstico Molecular , Pseudotumor Orbitário/metabolismo , Proteômica/métodos
12.
J Am Chem Soc ; 143(18): 6787-6791, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33914500

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a multifunctional molecule. Beyond redox metabolism, NAD+ has an equally important function as a substrate for post-translational modification enzymes, the largest family being the poly-ADP-ribose polymerases (PARPs, 17 family members in humans). The recent surprising discoveries of noncanonical NAD (NAD+/NADH)-binding proteins suggests that the NAD interactome is likely larger than previously thought; yet, broadly useful chemical tools for profiling and discovering NAD-binding proteins do not exist. Here, we describe the design, synthesis, and validation of clickable, photoaffinity labeling (PAL) probes, 2- and 6-ad-BAD, for interrogating the NAD interactome. We found that 2-ad-BAD efficiently labels PARPs in a UV-dependent manner. Chemical proteomics experiments with 2- and 6-ad-BAD identified known and unknown NAD+/NADH-binding proteins. Together, our study shows the utility of 2- and 6-ad-BAD as clickable PAL NAD probes.


Assuntos
Nucleotídeos de Adenina/química , Benzamidas/química , Proteínas de Transporte/química , NAD/química , Proteômica , Humanos
13.
J Lipid Res ; 62: 100003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33429337

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates cholesterol metabolism by inducing the degradation of hepatic low density lipoprotein receptors (LDLRs). Plasma PCSK9 has 2 main molecular forms: a 62 kDa mature form (PCSK9_62) and a 55 kDa, furin-cleaved form (PCSK9_55). PCSK9_55 is considered less active than PCSK9_62 in degrading LDLRs. We aimed to identify the site of PCSK9_55 formation (intracellular vs. extracellular) and to further characterize the LDLR-degradative function of PCSK9_55 relative to PCSK9_62. Coexpressing PCSK9_62 with furin in cell culture induced formation of PCSK9_55, most of which was found in the extracellular space. Under the same conditions, we found that i) adding a cell-permeable furin inhibitor preferentially decreased the formation of PCSK9_55 extracellularly; ii) using pulse-chase analysis, we observed the formation of PCSK9_55 exclusively extracellularly in a time-dependent manner. A recombinant form of PCSK9_55 was efficiently produced but displayed impaired secretion that resulted in its intracellular trapping. However, the nonsecreted PCSK9_55 was able to induce degradation of LDLR, though with 50% lower efficiency than PCSK9_62. Collectively, our data show that 1) PCSK9_55 is formed extracellularly; 2) PCSK9_55 has a shorter half-life; 3) there is a small intracellular pool of PCSK9_55 that is not secreted; and 4) PCSK9_55 retained within the cell maintains a reduced efficiency to cause LDLR degradation.


Assuntos
Pró-Proteína Convertase 9
14.
Elife ; 102021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33475084

RESUMO

Poly(ADP-ribose) polymerase 7 (PARP-7) has emerged as a critically important member of a large enzyme family that catalyzes ADP-ribosylation in mammalian cells. PARP-7 is a critical regulator of the innate immune response. What remains unclear is the mechanism by which PARP-7 regulates this process, namely because the protein targets of PARP-7 mono-ADP-ribosylation (MARylation) are largely unknown. Here, we combine chemical genetics, proximity labeling, and proteome-wide amino acid ADP-ribosylation site profiling for identifying the direct targets and sites of PARP-7-mediated MARylation in a cellular context. We found that the inactive PARP family member, PARP-13-a critical regulator of the antiviral innate immune response-is a major target of PARP-7. PARP-13 is preferentially MARylated on cysteine residues in its RNA binding zinc finger domain. Proteome-wide ADP-ribosylation analysis reveals cysteine as a major MARylation acceptor of PARP-7. This study provides insight into PARP-7 targeting and MARylation site preference.


Assuntos
ADP-Ribosilação , Cisteína/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Proteoma/genética , Proteínas de Ligação a RNA/genética , Mapeamento Cromossômico , Humanos , Proteínas de Transporte de Nucleosídeos/química , Proteoma/química , Proteínas de Ligação a RNA/química
15.
Transl Androl Urol ; 9(5): 2000-2006, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33209664

RESUMO

BACKGROUND: The microscopic characteristics of vasal fluid at time of vasectomy reversal (VR) guide operative decision making and predict fertility outcomes. The proteomic profile of this vasal fluid has not been described or correlated with the microscopic fluid appearance. To characterize the vasal fluid proteome at time of VR and evaluate the variation of the vasal fluid proteome with respect to microscopic presence of sperm. METHODS: A prospective cohort study was conducted enrolling twenty-five men undergoing VR for infertility and/or pain at a University-affiliated hospital. Vasal fluid samples obtained at time of VR were grouped based on presence of sperm on light microscopy at time of VR. Proteomic profiles were generated using liquid chromatography/ tandem mass spectrometry, and MS/MS protein spectral counts compared between individuals and treatment groups, controlling for less than 5% protein false discovery rate (FDR). Proteins were matched with the human swissprot database using the Comet search engine, and categorized by Gene Ontology (GO) terms. RESULTS: There was large variability between the 46 vasal fluid samples collected, with 1,692 unique proteins detected. The three most abundant proteins were Lactotransferrin, Cysteine-rich secretory protein 1, A-kinase anchor protein 4. There was no correlation between the proteome and microscopic sperm presence. Prevalent GO terms included viral process, signal transduction, innate immune response, protein folding and spermatogenesis. CONCLUSIONS: We describe the proteome and the most common proteins in vasal fluid at time of VR. Numerable sperm, testis and epididymis specific proteins were present even in the absence of sperm on microscopy. Further evaluation is needed to determine if a protein biomarker may better guide operative decision making and predict VR fertility outcomes.

16.
Protein Sci ; 29(9): 1945-1963, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32697405

RESUMO

Age-related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long-lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface-exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen-deuterium exchange, and susceptibility to disulfide cross-linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light-scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide-linked aggregates. The lens-specific chaperone αA-crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS-crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses.


Assuntos
Cristalino/química , Agregados Proteicos , Desdobramento de Proteína , gama-Cristalinas/química , Desaminação , Humanos
17.
Blood ; 136(20): 2346-2358, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32640021

RESUMO

Platelets engage cues of pending vascular injury through coordinated adhesion, secretion, and aggregation responses. These rapid, progressive changes in platelet form and function are orchestrated downstream of specific receptors on the platelet surface and through intracellular signaling mechanisms that remain systematically undefined. This study brings together cell physiological and phosphoproteomics methods to profile signaling mechanisms downstream of the immunotyrosine activation motif (ITAM) platelet collagen receptor GPVI. Peptide tandem mass tag (TMT) labeling, sample multiplexing, synchronous precursor selection (SPS), and triple stage tandem mass spectrometry (MS3) detected >3000 significant (false discovery rate < 0.05) phosphorylation events on >1300 proteins over conditions initiating and progressing GPVI-mediated platelet activation. With literature-guided causal inference tools, >300 site-specific signaling relations were mapped from phosphoproteomics data among key and emerging GPVI effectors (ie, FcRγ, Syk, PLCγ2, PKCδ, DAPP1). Through signaling validation studies and functional screening, other less-characterized targets were also considered within the context of GPVI/ITAM pathways, including Ras/MAPK axis proteins (ie, KSR1, SOS1, STAT1, Hsp27). Highly regulated GPVI/ITAM targets out of context of curated knowledge were also illuminated, including a system of >40 Rab GTPases and associated regulatory proteins, where GPVI-mediated Rab7 S72 phosphorylation and endolysosomal maturation were blocked by TAK1 inhibition. In addition to serving as a model for generating and testing hypotheses from omics datasets, this study puts forth a means to identify hemostatic effectors, biomarkers, and therapeutic targets relevant to thrombosis, vascular inflammation, and other platelet-associated disease states.


Assuntos
Algoritmos , Ativação Plaquetária/fisiologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteômica/métodos , Animais , Humanos , Transdução de Sinais/fisiologia
18.
J Cachexia Sarcopenia Muscle ; 11(2): 464-477, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898871

RESUMO

BACKGROUND: Reversible ε-amino acetylation of lysine residues regulates transcription as well as metabolic flux; however, roles for specific lysine acetyltransferases in skeletal muscle physiology and function are unknown. In this study, we investigated the role of the related acetyltransferases p300 and cAMP response element-binding protein-binding protein (CBP) in skeletal muscle transcriptional homeostasis and physiology in adult mice. METHODS: Mice with skeletal muscle-specific and inducible knockout of p300 and CBP (PCKO) were generated by crossing mice with a tamoxifen-inducible Cre recombinase expressed under the human α-skeletal actin promoter with mice having LoxP sites flanking exon 9 of the Ep300 and Crebbp genes. Knockout of PCKO was induced at 13-15 weeks of age via oral gavage of tamoxifen for 5 days to both PCKO and littermate control [wildtype (WT)] mice. Body composition, food intake, and muscle function were assessed on day 0 (D0) through 5 (D5). Microarray and tandem mass tag mass spectrometry analyses were performed to assess global RNA and protein levels in skeletal muscle of PCKO and WT mice. RESULTS: At D5 after initiating tamoxifen treatment, there was a reduction in body weight (-15%), food intake (-78%), stride length (-46%), and grip strength (-45%) in PCKO compared with WT mice. Additionally, ex vivo contractile function [tetanic tension (kPa)] was severely impaired in PCKO vs. WT mice at D3 (~70-80% lower) and D5 (~80-95% lower) and resulted in lethality within 1 week-a phenotype that is reversed by the presence of a single allele of either p300 or CBP. The impaired muscle function in PCKO mice was paralleled by substantial transcriptional alterations (3310 genes; false discovery rate < 0.1), especially in gene networks central to muscle contraction and structural integrity. This transcriptional uncoupling was accompanied by changes in protein expression patterns indicative of impaired muscle function, albeit to a smaller magnitude (446 proteins; fold-change > 1.25; false discovery rate < 0.1). CONCLUSIONS: These data reveal that p300 and CBP are required for the control and maintenance of contractile function and transcriptional homeostasis in skeletal muscle and, ultimately, organism survival. By extension, modulating p300/CBP function may hold promise for the treatment of disorders characterized by impaired contractile function in humans.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína p300 Associada a E1A/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Animais , Homeostase , Humanos , Camundongos , Análise de Sobrevida
19.
Hum Genet ; 139(2): 151-184, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31797049

RESUMO

While the bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery) effectively identifies human cataract-associated genes, it is currently based on just transcriptome data, and thus, it is necessary to include protein-level information to gain greater confidence in gene prioritization. Here, we expand iSyTE through development of a novel proteome-based resource on the lens and demonstrate its utility in cataract gene discovery. We applied high-throughput tandem mass spectrometry (MS/MS) to generate a global protein expression profile of mouse lens at embryonic day (E)14.5, which identified 2371 lens-expressed proteins. A major challenge of high-throughput expression profiling is identification of high-priority candidates among the thousands of expressed proteins. To address this problem, we generated new MS/MS proteome data on mouse whole embryonic body (WB). WB proteome was then used as a reference dataset for performing "in silico WB-subtraction" comparative analysis with the lens proteome, which effectively identified 422 proteins with lens-enriched expression at ≥ 2.5 average spectral counts, ≥ 2.0 fold enrichment (FDR < 0.01) cut-off. These top 20% candidates represent a rich pool of high-priority proteins in the lens including known human cataract-linked genes and many new potential regulators of lens development and homeostasis. This rich information is made publicly accessible through iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), which enables user-friendly visualization of promising candidates, thus making iSyTE a comprehensive tool for cataract gene discovery.


Assuntos
Biomarcadores/metabolismo , Catarata/metabolismo , Simulação por Computador , Proteínas do Olho/metabolismo , Cristalino/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Catarata/genética , Catarata/patologia , Biologia Computacional , Proteínas do Olho/genética , Perfilação da Expressão Gênica , Humanos , Cristalino/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/análise , Transcriptoma
20.
Biochemistry ; 58(40): 4112-4124, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31490062

RESUMO

Deamidation is a major age-related modification in the human lens that is highly prevalent in crystallins isolated from the insoluble fraction of cataractous lenses and also causes protein aggregation in vitro. However, the mechanism by which deamidation causes proteins to become insoluble is not known because only subtle structural changes were observed in vitro. We have identified Asn14 and Asn76 of γS-crystallin as highly deamidated in insoluble proteins isolated from aged lenses. These sites are on the surface of the N-terminal domain and were mimicked by replacing the Asn with Asp residues in order to generate recombinant human γS and deamidated mutants. Both N14D and N76D had increased light scattering compared to wild-type γS (WT) and increased aggregation during thermal-induced denaturation. Aggregation was enhanced by oxidized glutathione, suggesting deamidation may increase susceptibility to form disulfide bonds. These changes were correlated to changes in protein dynamics determined by NMR spectroscopy. Heteronuclear NMR spectroscopy was used to measure amide hydrogen exchange and 15N relaxation dynamics to identify regions with increased dynamics compared to γS WT. Residue-specific changes in solvent accessibility and dynamics were both near and distant from the sites of deamidation, suggesting that deamidation had both local and global effects on the protein structure at slow (ms to s) and fast (µs to ps) time scales. Thus, a potential mechanism for γS deamidation-induced insolubilization in cataractous lenses is altered dynamics due to local regions of unfolding and increased flexibility in both the N- and C-terminal domains particularly at surface helices. This conformational flexibility increases the likelihood of aggregation, which would be enhanced in the oxidizing cytoplasm of the aged and cataractous lens. The NMR data combined with the in vivo insolubility and in vitro aggregation findings support a model that deamidation drives changes in protein dynamics that facilitate protein aggregation associated with cataracts.


Assuntos
Catarata/fisiopatologia , Multimerização Proteica , gama-Cristalinas/metabolismo , Idoso de 80 Anos ou mais , Asparagina/química , Humanos , Hidrólise , Conformação Proteica em alfa-Hélice , Desdobramento de Proteína , Espalhamento de Radiação , gama-Cristalinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...