Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1380443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800472

RESUMO

Objective: This meta-analysis includes the systematic literature review and meta-analysis involving clinical trials to assess the efficacy and safety of mesenchymal stem cell (MSC) transplantation for treating T1DM and T2DM. Methods: We searched PubMed, ScienceDirect, Web of Science, clinicaltrials.gov, and Cochrane Library for "published" research from their inception until November 2023. Two researchers independently reviewed the studies' inclusion and exclusion criteria. Our meta-analysis included 13 studies on MSC treatment for diabetes. Results: The MSC-treated group had a significantly lower HbA1c at the last follow-up compared to the baseline (MD: 0.95, 95% CI: 0.33 to 1.57, P-value: 0.003< 0.05), their insulin requirement was significantly lower (MD: 0.19, 95% CI: 0.07 to 0.31, P-value: 0.002< 0.05), the level of FBG with MSC transplantation significantly dropped compared to baseline (MD: 1.78, 95% CI: -1.02 to 4.58, P-value: 0.212), the FPG level of the MSC-treated group was significantly lower (MD: -0.77, 95% CI: -2.36 to 0.81, P-value: 0.339 > 0.05), and the fasting C-peptide level of the MSC-treated group was slightly high (MD: -0.02, 95% CI: -0.07 to 0.02, P-value: 0.231 > 0.05). Conclusion: The transplantation of MSCs has been found to positively impact both types of diabetes mellitus without signs of apparent adverse effects.


Assuntos
Transplante de Células-Tronco Mesenquimais , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 1/terapia , Resultado do Tratamento , Células-Tronco Mesenquimais/citologia , Diabetes Mellitus/terapia
2.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712077

RESUMO

Physical particles can serve as critical abiotic factors that structure the ecology of microbial communities. For non-human vertebrate gut microbiomes, fecal particle size (FPS) has been known to be shaped by chewing efficiency and diet. However, little is known about what drives FPS in the human gut. Here, we analyzed FPS by laser diffraction across a total of 76 individuals and found FPS to be strongly individualized. Surprisingly, a behavioral intervention with 41 volunteers designed to increase chewing efficiency did not impact FPS. Dietary patterns could also not be associated with FPS. Instead, we found evidence that mammalian and human gut microbiomes shaped FPS. Fecal samples from germ-free and antibiotic-treated mice exhibited increased FPS relative to colonized mice. In humans, markers of longer transit time were correlated with smaller FPS. Gut microbiota diversity and composition were also associated with FPS. Finally, ex vivo culture experiments using human fecal microbiota from distinct donors showed that differences in microbiota community composition can drive variation in particle size. Together, our results support an ecological model in which the human gut microbiome plays a key role in reducing the size of food particles during digestion, and that the microbiomes of individuals vary in this capacity. These new insights also suggest FPS in humans to be governed by processes beyond those found in other mammals and emphasize the importance of gut microbiota in shaping their own abiotic environment.

3.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645092

RESUMO

Objective biomarkers of food intake are a sought-after goal in nutrition research. Most biomarker development to date has focused on metabolites detected in blood, urine, skin or hair, but detection of consumed foods in stool has also been shown to be possible via DNA sequencing. An additional food macromolecule in stool that harbors sequence information is protein. However, the use of protein as an intake biomarker has only been explored to a very limited extent. Here, we evaluate and compare measurement of residual food-derived DNA and protein in stool as potential biomarkers of intake. We performed a pilot study of DNA sequencing-based metabarcoding (FoodSeq) and mass spectrometry-based metaproteomics in five individuals' stool sampled in short, longitudinal bursts accompanied by detailed diet records (n=27 total samples). Dietary data provided by stool DNA, stool protein, and written diet record independently identified a strong within-person dietary signature, identified similar food taxa, and had significantly similar global structure in two of the three pairwise comparisons between measurement techniques (DNA-to-protein and DNA-to-diet record). Metaproteomics identified proteins including myosin, ovalbumin, and beta-lactoglobulin that differentiated food tissue types like beef from dairy and chicken from egg, distinctions that were not possible by DNA alone. Overall, our results lay the groundwork for development of targeted metaproteomic assays for dietary assessment and demonstrate that diverse molecular components of food can be leveraged to study food intake using stool samples.

4.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473808

RESUMO

Antibodies to DNA are a diverse set of antibodies that bind sites on DNA, a polymeric macromolecule that displays various conformations. In a previous study, we showed that sera of normal healthy subjects (NHS) contain IgG antibodies to Z-DNA, a left-handed helix with a zig-zig backbone. Recent studies have demonstrated the presence of Z-DNA in bacterial biofilms, suggesting a source of this conformation to induce responses. To characterize further antibodies to Z-DNA, we used an ELISA assay with brominated poly(dGdC) as a source of Z-DNA and determined the isotype of these antibodies and their binding properties. Results of these studies indicate that NHS sera contain IgM and IgA as well as IgG anti-Z-DNA antibodies. As shown by the effects of ionic strength in association and dissociation assays, the anti-Z-DNA antibodies bind primarily by electrostatic interactions; this type of binding differs from that of induced anti-Z-DNA antibodies from immunized animals which bind by non-ionic interactions. Furthermore, urea caused dissociation of NHS anti-Z-DNA at molar concentrations much lower than those for the induced antibodies. These studies also showed IgA anti-Z-DNA antibodies in fecal water. Together, these studies demonstrate that antibodies to Z-DNA occur commonly in normal immunity and may arise as a response to Z-DNA of bacterial origin.


Assuntos
DNA Forma Z , Animais , Humanos , Voluntários Saudáveis , Anticorpos Antinucleares , Imunoglobulina G , Imunoglobulina A
5.
J Mol Med (Berl) ; 102(4): 537-570, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38418620

RESUMO

Diabetes mellitus (DM) often causes chronic kidney damage despite best medical practices. Diabetic kidney disease (DKD) arises from a complex interaction of factors within the kidney and the whole body. Targeting specific disease-causing agents using drugs has not been effective in treating DKD. However, stem cell therapies offer a promising alternative by addressing multiple disease pathways and promoting kidney regeneration. Mesenchymal stem cells (MSCs) offer great promise due to their superior accessibility ratio from adult tissues and remarkable modes of action, such as the production of paracrine anti-inflammatory and cytoprotective substances. This review critically evaluates the development of MSC treatment for DKD as it moves closer to clinical application. Results from animal models suggest that systemic MSC infusion may positively impact DKD progression. However, few registered and completed clinical trials exist, and whether the treatments are effective in humans is still being determined. Significant knowledge gaps and research opportunities exist, including establishing the ideal source, dose, and timing of MSC delivery, better understanding of in vivo mechanisms, and developing quantitative indicators to obtain a more significant therapeutic response. This paper reviews recent literature on using MSCs in preclinical and clinical trials in DKD. Potent biomarkers related to DKD are also highlighted, which may help better understand MSCs' action in this disease progression. KEY MESSAGES: Mesenchymal stem cells have anti-inflammatory and paracrine effects in diabetic kidney disease. Mesenchymal stem cells alleviate in animal models having diabetic kidney disease. Mesenchymal stem cells possess promise for the treatment of diabetic kidney disease.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Adulto , Animais , Humanos , Nefropatias Diabéticas/terapia , Nefropatias Diabéticas/metabolismo , Rim , Transplante de Células-Tronco Mesenquimais/métodos , Regeneração , Anti-Inflamatórios/farmacologia , Células-Tronco Mesenquimais/metabolismo , Diabetes Mellitus/metabolismo
6.
PLoS One ; 19(1): e0290598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261587

RESUMO

The infant gut microbiome is a crucial factor in health and development. In preterm infants, altered gut microbiome composition and function have been linked to serious neonatal complications such as necrotizing enterocolitis and sepsis, which can lead to long-term disability. Although many studies have described links between microbiome composition and disease risk, there is a need for biomarkers to identify infants at risk of these complications in practice. In this pilot study, we obtained stool samples from preterm infant participants longitudinally during the first postnatal months, and measured pH and redox, as well as SCFA content and microbiome composition by 16S rRNA gene amplicon sequencing. These outcomes were compared to clinical data to better understand the role of pH and redox in infant gut microbiome development and overall health, and to assess the potential utility of pH and redox as biomarkers. We found that infants born earlier or exposed to antibiotics exhibited increased fecal pH, and that redox potential increased with postnatal age. These differences may be linked to changes in SCFA content, which was correlated with pH and increased with age. Microbiome composition was also related to birth weight, age, pH, and redox. Our findings suggest that pH and redox may serve as biomarkers of metabolic state in the preterm infant gut.


Assuntos
Alcalose , Microbioma Gastrointestinal , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Projetos Piloto , RNA Ribossômico 16S , Oxirredução , Biomarcadores , Concentração de Íons de Hidrogênio
7.
Contemp Clin Trials ; 137: 107427, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184104

RESUMO

BACKGROUND: Aging is associated with gut dysbiosis, low-grade inflammation, and increased risk of type 2 diabetes (T2D). Prediabetes, which increases T2D and cardiovascular disease risk, is present in 45-50% of mid-life adults. The gut microbiota may link ultra-processed food (UPF) with inflammation and T2D risk. METHODS: Following a 2-week standardized lead-in diet (59% UPF), adults aged 40-65 years will be randomly assigned to a 6-week diet emphasizing either UPF (81% total energy) or non-UPF (0% total energy). Measurements of insulin sensitivity, 24-h and postprandial glycemic control, gut microbiota composition/function, fecal short chain fatty acids, intestinal inflammation, inflammatory cytokines, and vascular function will be made before and following the 6-week intervention period. Prior to recruitment, menus were developed in order to match UPF and non-UPF conditions based upon relevant dietary factors. Menus were evaluated for palatability and costs, and the commercial additive content of study diets was quantified to explore potential links with outcomes. RESULTS: Overall diet palatability ratings were similar (UPF = 7.6 ± 1.0; Non-UPF = 6.8 ± 1.5; Like Moderately = 7, Like Very Much = 8). Cost analysis (food + labor) of the 2000 kcal menu (7-d average) revealed lower costs for UPF compared to non-UPF diets ($20.97/d and $40.23/d, respectively). Additive exposure assessment of the 2000 kcal UPF diet indicated that soy lecithin (16×/week), citric acid (13×/week), sorbic acid (13×/week), and sodium citrate (12×/week) were the most frequently consumed additives. CONCLUSIONS: Whether UPF consumption impairs glucose homeostasis in mid-life adults is unknown. Findings will address this research gap and contribute information on how UPF consumption may influence T2D development.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Adulto , Humanos , Alimento Processado , Inflamação , Homeostase , Glucose , Dieta , Fast Foods
8.
Curr Health Sci J ; 49(1): 129-133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780195

RESUMO

The key factors contributing to radiculopathy caused by lumbar disc herniation include mechanical compression. It was commonly believed that the disc herniation causes the compression on the nerve root exiting under the pedicle of the vertebral body at the adjacent inferior level. However, a disc herniation might occasionally result in non-adjacent, isolated radicular symptoms. We report the case of a 74-year-old female who presented with a 2-years history of progressive low back pain associated with L5 radiculopathy and reduced quality of life. The patient had undergone a magnetic resonance image showing a large L2/3 disc herniation. Symptoms had progressively worsened and failed to respond to conservative treatments including pain medication, exercise rehabilitation, and acupuncture at the lower lumbar region. The patient was diagnosed with L5 radiculopathy caused by L2/3 disc herniation. Consequently, her symptoms improved with chiropractic rehabilitation which involved spinal manipulative therapy and intermittent motorized traction at the L2/3 level to reduce herniated disc. Therefore, an L2/3 Disc herniation-related L5 radiculopathy should be considered in the differential diagnosis of cases of inconsistency of level of disc herniation and nerve root pattern.

9.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645803

RESUMO

The infant gut microbiome is a crucial factor in health and development. In preterm infants, altered gut microbiome composition and function have been linked to serious neonatal complications such as necrotizing enterocolitis and sepsis, which can lead to long-term disability. Although many studies have described links between microbiome composition and disease risk, there is a need for biomarkers to identify infants at risk of these complications in practice. In this study, we obtained stool samples from preterm infant participants longitudinally during the first postnatal months, and measured pH and redox, as well as SCFA content and microbiome composition by 16S rRNA gene amplicon sequencing. These outcomes were compared to clinical data to better understand the role of pH and redox in infant gut microbiome development and overall health, and to assess the potential utility of pH and redox as biomarkers. We found that infants born earlier or exposed to antibiotics exhibited increased fecal pH, and that redox potential increased with postnatal age. These differences may be linked to changes in SCFA content, which was correlated with pH and increased with age. Microbiome composition was also related to birth weight, age, pH, and redox. Our findings suggest that pH and redox may serve as biomarkers of metabolic state in the preterm infant gut.

10.
Nat Microbiol ; 8(8): 1450-1467, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337046

RESUMO

Akkermansia muciniphila, a mucophilic member of the gut microbiota, protects its host against metabolic disorders. Because it is genetically intractable, the mechanisms underlying mucin metabolism, gut colonization and its impact on host physiology are not well understood. Here we developed and applied transposon mutagenesis to identify genes important for intestinal colonization and for the use of mucin. An analysis of transposon mutants indicated that de novo biosynthesis of amino acids was required for A. muciniphila growth on mucin medium and that many glycoside hydrolases are redundant. We observed that mucin degradation products accumulate in internal compartments within bacteria in a process that requires genes encoding pili and a periplasmic protein complex, which we term mucin utilization locus (MUL) genes. We determined that MUL genes were required for intestinal colonization in mice but only when competing with other microbes. In germ-free mice, MUL genes were required for A. muciniphila to repress genes important for cholesterol biosynthesis in the colon. Our genetic system for A. muciniphila provides an important tool with which to uncover molecular links between the metabolism of mucins, regulation of lipid homeostasis and potential probiotic activities.


Assuntos
Intestinos , Mucinas , Verrucomicrobia , Animais , Camundongos , Mucinas/metabolismo , Esteróis/biossíntese , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/metabolismo , Intestinos/microbiologia , Organismos Livres de Patógenos Específicos , Elementos de DNA Transponíveis/genética , Mutagênese , Interações entre Hospedeiro e Microrganismos/genética , Espaço Intracelular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transcrição Gênica
11.
Sci Adv ; 9(24): eadg6670, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327328

RESUMO

Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We report a paper-like battery-free in situ AI-enabled multiplexed (PETAL) sensor for holistic wound assessment by leveraging deep learning algorithms. This sensor consists of a wax-printed paper panel with five colorimetric sensors for temperature, pH, trimethylamine, uric acid, and moisture. Sensor images captured by a mobile phone were analyzed by neural network-based machine learning algorithms to determine healing status. For ex situ detection via exudates collected from rat perturbed wounds and burn wounds, the PETAL sensor can classify healing versus nonhealing status with an accuracy as high as 97%. With the sensor patches attached on rat burn wound models, in situ monitoring of wound progression or severity is demonstrated. This PETAL sensor allows early warning of adverse events, which could trigger immediate clinical intervention to facilitate wound care management.


Assuntos
Queimaduras , Cicatrização , Ratos , Animais , Aprendizado de Máquina , Algoritmos
12.
Proc Natl Acad Sci U S A ; 120(27): e2304441120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37368926

RESUMO

Eating a varied diet is a central tenet of good nutrition. Here, we develop a molecular tool to quantify human dietary plant diversity by applying DNA metabarcoding with the chloroplast trnL-P6 marker to 1,029 fecal samples from 324 participants across two interventional feeding studies and three observational cohorts. The number of plant taxa per sample (plant metabarcoding richness or pMR) correlated with recorded intakes in interventional diets and with indices calculated from a food frequency questionnaire in typical diets (ρ = 0.40 to 0.63). In adolescents unable to collect validated dietary survey data, trnL metabarcoding detected 111 plant taxa, with 86 consumed by more than one individual and four (wheat, chocolate, corn, and potato family) consumed by >70% of individuals. Adolescent pMR was associated with age and household income, replicating prior epidemiologic findings. Overall, trnL metabarcoding promises an objective and accurate measure of the number and types of plants consumed that is applicable to diverse human populations.


Assuntos
Dieta , Estado Nutricional , Adolescente , Humanos , DNA de Plantas/genética , Plantas/genética , Código de Barras de DNA Taxonômico
13.
ACS Appl Mater Interfaces ; 15(14): 17675-17687, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37001053

RESUMO

Effective wound care and treatment require a quick and comprehensive assessment of healing status. Here, we develop a carbon dot-doped hydrogel sensor array in polydimethylsiloxane (PDMS) for simultaneous colorimetric detections of five wound biomarkers and/or wound condition indicators (pH, glucose, urea, uric acid, and total protein), leading to the holistic assessment of inflammation and infection. A biogenic carbon dot synthesized using an amino acid and a polymer precursor is doped in an agarose hydrogel matrix for constructing enzymatic sensors (glucose, urea, and uric acid) and dye-based sensors (pH and total protein). The encapsulated enzymes in such a matrix exhibit improved enzyme kinetics and stability compared to those in pure hydrogels. Such a matrix also provides stable colorimetric responses for all five sensors. The sensor array exhibits high accuracy (recovery rates of 91.5-113.1%) and clinically relevant detection ranges for all five wound markers. The sensor array is established for simulated wound fluids and validated with rat wound fluids from perturbed wound models. Distinct color patterns are obtained that can clearly distinguish healing vs nonhealing wounds visually and quantitatively. This hydrogel sensor array shows great potential for on-site wound sensing due to its long-term stability, lightweight, and flexibility.


Assuntos
Colorimetria , Hidrogéis , Ratos , Animais , Hidrogéis/química , Carbono/química , Ácido Úrico , Cicatrização , Ureia , Glucose
14.
Stem Cell Rev Rep ; 19(3): 651-666, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36520408

RESUMO

Premature ovarian failure (POF) affects 1% of women under 40, leading to infertility. The clinical symptoms of the POF include hypoestrogenism, lack of mature follicles, hypergonadotropinism, and amenorrhea. POF can be caused due to genetic defects, autoimmune illnesses, and environmental factors. The conventional treatment of POF remains a limited success rate. Therefore, an innovative treatment strategy like the regeneration of premature ovaries by using human umbilical cord mesenchymal stem cells (hUC-MSCs) can be a choice. To summarize all the theoretical frameworks for additional research and clinical trials, this review article highlights all the results, pros, and cons of the hUC-MSCs used to treat POF. So far, the data shows promising results regarding the treatment of POF using hUC-MSCs. Several properties like relatively low immunogenicity, multipotency, multiple origins, affordability, convenience in production, high efficacy, and donor/recipient friendliness make hUC-MSCs a good choice for treating basic POF. It has been reported that hUC-MSCs impact and enhance all stages of injured tissue regeneration by concurrently stimulating numerous pathways in a paracrine manner, which are involved in the control of ovarian fibrosis, angiogenesis, immune system modulation, and apoptosis. Furthermore, some studies demonstrated that stem cell treatment could lead to hormone-level restoration, follicular activation, and functional restoration of the ovaries. Therefore, all the results in hand regarding the use of hUC-MSCs for the treatment of POF encourage researchers for further clinical trials, which will overcome the ongoing challenges and make this treatment strategy applicable to the clinic in the near future.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/etiologia , Transplante de Células-Tronco Mesenquimais/métodos , Cordão Umbilical
15.
Zootaxa ; 5380(6): 526-540, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38221292

RESUMO

A new species of genus Bactrocera Macquart, Bactrocera (Bactrocera) prabhakari Maneesh, Gupta & Hancock, sp. n., is described from Himachal Pradesh, Northern India, reared from Solanum khasianum Clarke commonly known as medicinal solanum or Dutch eggplant. This species resembles Bactrocera latifrons (Hendel) and an updated key to Indian fruit flies of subgenus Bactrocera Macquart is provided. Bactrocera yoshimotoi (Hardy) (= B. luteicinctuta Ito, syn. nov.) in newly recorded from Himachal Pradesh in northern India and variability in B. scutellaris (Bezzi) is discussed together with illustrations.


Assuntos
Solanum , Tephritidae , Animais , Drosophila , Índia
16.
Nat Chem Biol ; 18(11): 1245-1252, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36050493

RESUMO

The functions of many microbial communities exhibit remarkable stability despite fluctuations in the compositions of these communities. To date, a mechanistic understanding of this function-composition decoupling is lacking. Statistical mechanisms have been commonly hypothesized to explain such decoupling. Here, we proposed that dynamic mechanisms, mediated by horizontal gene transfer (HGT), also enable the independence of functions from the compositions of microbial communities. We combined theoretical analysis with numerical simulations to illustrate that HGT rates can determine the stability of gene abundance in microbial communities. We further validated these predictions using engineered microbial consortia of different complexities transferring one or more than a dozen clinically isolated plasmids, as well as through the reanalysis of data from the literature. Our results demonstrate a generalizable strategy to program the gene stability of microbial communities.


Assuntos
Transferência Genética Horizontal , Microbiota , Microbiota/genética , Plasmídeos/genética
17.
Zootaxa ; 5168(2): 237-250, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-36101287

RESUMO

A new species of Bactrocera Macquart, Bactrocera (Bactrocera) divenderi Maneesh, Hancock and Prabhakar, sp. n., is described from Himachal Pradesh, Northern India and also recorded from Bhutan and northern Pakistan. It belongs to the B. (B.) nigrotibialis complex and a key to the complex is provided. Dacus (Mellesis) fletcheri Drew is newly recorded from India and records of B. (B.) invadens Drew, Tsuruta White from the Himalayan region are discussed.


Assuntos
Tephritidae , Animais , Índia
19.
ISME J ; 16(11): 2479-2490, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35871250

RESUMO

Many ecosystems have been shown to retain a memory of past conditions, which in turn affects how they respond to future stimuli. In microbial ecosystems, community disturbance has been associated with lasting impacts on microbiome structure. However, whether microbial communities alter their response to repeated stimulus remains incompletely understood. Using the human gut microbiome as a model, we show that bacterial communities retain an "ecological memory" of past carbohydrate exposures. Memory of the prebiotic inulin was encoded within a day of supplementation among a cohort of human study participants. Using in vitro gut microbial models, we demonstrated that the strength of ecological memory scales with nutrient dose and persists for days. We found evidence that memory is seeded by transcriptional changes among primary degraders of inulin within hours of nutrient exposure, and that subsequent changes in the activity and abundance of these taxa are sufficient to enhance overall community nutrient metabolism. We also observed that ecological memory of one carbohydrate species impacts microbiome response to other carbohydrates, and that an individual's habitual exposure to dietary fiber was associated with their gut microbiome's efficiency at digesting inulin. Together, these findings suggest that the human gut microbiome's metabolic potential reflects dietary exposures over preceding days and changes within hours of exposure to a novel nutrient. The dynamics of this ecological memory also highlight the potential for intra-individual microbiome variation to affect the design and interpretation of interventions involving the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Fibras na Dieta , Microbioma Gastrointestinal/fisiologia , Humanos , Inulina , Nutrientes
20.
Microbiome ; 10(1): 114, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35902900

RESUMO

BACKGROUND: Short-chain fatty acids (SCFAs) derived from gut bacteria are associated with protective roles in diseases ranging from obesity to colorectal cancers. Intake of microbially accessible dietary fibers (prebiotics) lead to varying effects on SCFA production in human studies, and gut microbial responses to nutritional interventions vary by individual. It is therefore possible that prebiotic therapies will require customizing to individuals. RESULTS: Here, we explored prebiotic personalization by conducting a three-way crossover study of three prebiotic treatments in healthy adults. We found that within individuals, metabolic responses were correlated across the three prebiotics. Individual identity, rather than prebiotic choice, was also the major determinant of SCFA response. Across individuals, prebiotic response was inversely related to basal fecal SCFA concentration, which, in turn, was associated with habitual fiber intake. Experimental measures of gut microbial SCFA production for each participant also negatively correlated with fiber consumption, supporting a model in which individuals' gut microbiota are limited in their overall capacity to produce fecal SCFAs from fiber. CONCLUSIONS: Our findings support developing personalized prebiotic regimens that focus on selecting individuals who stand to benefit, and that such individuals are likely to be deficient in fiber intake. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Adulto , Estudos Cross-Over , Fibras na Dieta/administração & dosagem , Ácidos Graxos Voláteis/análise , Fezes/química , Microbioma Gastrointestinal/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...