Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Assunto principal
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265951

RESUMO

Without any realistic prospect of comprehensive global vaccine coverage and lasting immunity, control of pandemics such as COVID-19 will require implementation of large-scale, rapid identification and isolation of infectious individuals to limit further transmission. Here, we describe an automated, high-throughput integrated screening platform, incorporating saliva-based loop-mediated isothermal amplification (LAMP) technology, that is designed for population-scale sensitive detection of infectious carriers of SARS-CoV-2 RNA. Central to this surveillance system is the "Sentinel" testing instrument, which is capable of reporting results within 25 minutes of saliva sample collection with a throughput of up to 3,840 results per hour. It incorporates continuous flow loading of samples at random intervals to cost-effectively adjust for fluctuations in testing demand. Independent validation of our saliva-based RT-LAMP technology on an automated LAMP instrument coined the "Sentinel", found 98.7% sensitivity, 97.6% specificity, and 98% efficiency against a RT-PCR comparator assay, confirming its suitability for surveillance screening. This Sentinel surveillance system offers a feasible and scalable approach to complement vaccination, to curb the spread of COVID-19 variants, and control future pandemics to save lives. One-Sentence SummaryDevelopment of a high-throughput LAMP-based automated continuous flow, random access SARS-CoV-2 screening platform with sufficient sensitivity and specificity to enable pandemic-scale population testing of infectious individuals using saliva sampling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...