Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Houriiyah Tegally; James E. San; Matthew Cotten; Bryan Tegomoh; Gerald Mboowa; Darren P. Martin; Cheryl Baxter; Monika Moir; Arnold Lambisia; Amadou Diallo; Daniel G. Amoako; Moussa M. Diagne; Abay Sisay; Abdel-Rahman N. Zekri; Abdelhamid Barakat; Abdou Salam Gueye; Abdoul K. Sangare; Abdoul-Salam Ouedraogo; Abdourahmane SOW; Abdualmoniem O. Musa; Abdul K. Sesay; Adamou LAGARE; Adedotun-Sulaiman Kemi; Aden Elmi Abar; Adeniji A. Johnson; Adeola Fowotade; Adewumi M. Olubusuyi; Adeyemi O. Oluwapelumi; Adrienne A. Amuri; Agnes Juru; Ahmad Mabrouk Ramadan; Ahmed Kandeil; Ahmed Mostafa; Ahmed Rebai; Ahmed Sayed; Akano Kazeem; Aladje Balde; Alan Christoffels; Alexander J. Trotter; Allan Campbell; Alpha Kabinet KEITA; Amadou Kone; Amal Bouzid; Amal Souissi; Ambrose Agweyu; Ana V. Gutierrez; Andrew J. Page; Anges Yadouleton; Anika Vinze; Anise N. Happi; Anissa Chouikha; Arash Iranzadeh; Arisha Maharaj; Armel Landry Batchi-Bouyou; Arshad Ismail; Augustina Sylverken; Augustine Goba; Ayoade Femi; Ayotunde Elijah Sijuwola; Azeddine Ibrahimi; Baba Marycelin; Babatunde Lawal Salako; Bamidele S. Oderinde; Bankole Bolajoko; Beatrice Dhaala; Belinda L. Herring; Benjamin Tsofa; Bernard Mvula; Berthe-Marie Njanpop-Lafourcade; Blessing T. Marondera; Bouh Abdi KHAIREH; Bourema Kouriba; Bright Adu; Brigitte Pool; Bronwyn McInnis; Cara Brook; Carolyn Williamson; Catherine Anscombe; Catherine B. Pratt; Cathrine Scheepers; Chantal G. Akoua-Koffi; Charles N. Agoti; Cheikh Loucoubar; Chika Kingsley Onwuamah; Chikwe Ihekweazu; Christian Noel MALAKA; Christophe Peyrefitte; Chukwuma Ewean Omoruyi; Clotaire Donatien Rafai; Collins M. Morang'a; D. James Nokes; Daniel Bugembe Lule; Daniel J. Bridges; Daniel Mukadi-Bamuleka; Danny Park; David Baker; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshiabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Donald S. Grant; Donwilliams O. Omuoyo; Dorcas Maruapula; Dorcas Waruguru Wanjohi; Ebenezer Foster-Nyarko; Eddy K. Lusamaki; Edgar Simulundu; Edidah M. Ong'era; Edith N. Ngabana; Edward O. Abworo; Edward Otieno; Edwin Shumba; Edwine Barasa; EL BARA AHMED; Elmostafa EL FAHIME; Emmanuel Lokilo; Enatha Mukantwari; Erameh Cyril; Eromon Philomena; Essia Belarbi; Etienne Simon-Loriere; Etile A. Anoh; Fabian Leendertz; Fahn M. Taweh; Fares Wasfi; Fatma Abdelmoula; Faustinos T. Takawira; Fawzi Derrar; Fehintola V Ajogbasile; Florette Treurnicht; Folarin Onikepe; Francine Ntoumi; Francisca M. Muyembe; FRANCISCO NGIAMBUDULU; Frank Edgard ZONGO Ragomzingba; Fred Athanasius DRATIBI; Fred-Akintunwa Iyanu; Gabriel K. Mbunsu; Gaetan Thilliez; Gemma L. Kay; George O. Akpede; George E Uwem; Gert van Zyl; Gordon A. Awandare; Grit Schubert; Gugu P. Maphalala; Hafaliana C. Ranaivoson; Hajar Lemriss; Hannah E Omunakwe; Harris Onywera; Haruka Abe; HELA KARRAY; Hellen Nansumba; Henda Triki; Herve Alberic ADJE KADJO; Hesham Elgahzaly; Hlanai Gumbo; HOTA mathieu; Hugo Kavunga-Membo; Ibtihel Smeti; Idowu B. Olawoye; Ifedayo Adetifa; Ikponmwosa Odia; Ilhem Boutiba-Ben Boubaker; Isaac Ssewanyana; Isatta Wurie; Iyaloo S Konstantinus; Jacqueline Wemboo Afiwa Halatoko; James Ayei; Janaki Sonoo; Jean Bernard LEKANA-DOUKI; Jean-Claude C. Makangara; Jean-Jacques M. Tamfum; Jean-Michel Heraud; Jeffrey G. Shaffer; Jennifer Giandhari; Jennifer Musyoki; Jessica N. Uwanibe; Jinal N. Bhiman; Jiro Yasuda; Joana Morais; Joana Q. Mends; Jocelyn Kiconco; John Demby Sandi; John Huddleston; John Kofi Odoom; John M. Morobe; John O. Gyapong; John T. Kayiwa; Johnson C. Okolie; Joicymara Santos Xavier; Jones Gyamfi; Joseph Humphrey Kofi Bonney; Joseph Nyandwi; Josie Everatt; Jouali Farah; Joweria Nakaseegu; Joyce M. Ngoi; Joyce Namulondo; Judith U. Oguzie; Julia C. Andeko; Julius J. Lutwama; Justin O'Grady; Katherine J Siddle; Kathleen Victoir; Kayode T. Adeyemi; Kefentse A. Tumedi; Kevin Sanders Carvalho; Khadija Said Mohammed; Kunda G. Musonda; Kwabena O. Duedu; Lahcen Belyamani; Lamia Fki-Berrajah; Lavanya Singh; Leon Biscornet; Leonardo de Oliveira Martins; Lucious Chabuka; Luicer Olubayo; Lul Lojok Deng; Lynette Isabella Ochola-Oyier; Madisa Mine; Magalutcheemee Ramuth; Maha Mastouri; Mahmoud ElHefnawi; Maimouna Mbanne; Maitshwarelo I. Matsheka; Malebogo Kebabonye; Mamadou Diop; Mambu Momoh; Maria da Luz Lima Mendonca; Marietjie Venter; Marietou F Paye; Martin Faye; Martin M. Nyaga; Mathabo Mareka; Matoke-Muhia Damaris; Maureen W. Mburu; Maximillian Mpina; Claujens Chastel MFOUTOU MAPANGUY; Michael Owusu; Michael R. Wiley; Mirabeau Youtchou Tatfeng; Mitoha Ondo'o Ayekaba; Mohamed Abouelhoda; Mohamed Amine Beloufa; Mohamed G Seadawy; Mohamed K. Khalifa; Mohammed Koussai DELLAGI; Mooko Marethabile Matobo; Mouhamed Kane; Mouna Ouadghiri; Mounerou Salou; Mphaphi B. Mbulawa; Mudashiru Femi Saibu; Mulenga Mwenda; My V.T. Phan; Nabil Abid; Nadia Touil; Nadine Rujeni; Nalia Ismael; Ndeye Marieme Top; Ndongo Dia; Nedio Mabunda; Nei-yuan Hsiao; Nelson Borico Silochi; Ngonda Saasa; Nicholas Bbosa; Nickson Murunga; Nicksy Gumede; Nicole Wolter; Nikita Sitharam; Nnaemeka Ndodo; Nnennaya A. Ajayi; Noel Tordo; Nokuzola Mbhele; Norosoa H Razanajatovo; Nosamiefan Iguosadolo; Nwando Mba; Ojide C. Kingsley; Okogbenin Sylvanus; Okokhere Peter; Oladiji Femi; Olumade Testimony; Olusola Akinola Ogunsanya; Oluwatosin Fakayode; Onwe E. Ogah; Ousmane Faye; Pamela Smith-Lawrence; Pascale Ondoa; Patrice Combe; Patricia Nabisubi; Patrick Semanda; Paul E. Oluniyi; Paulo Arnaldo; Peter Kojo Quashie; Philip Bejon; Philippe Dussart; Phillip A. Bester; Placide K. Mbala; Pontiano Kaleebu; Priscilla Abechi; Rabeh El-Shesheny; Rageema Joseph; Ramy Karam Aziz; Rene Ghislain Essomba; Reuben Ayivor-Djanie; Richard Njouom; Richard O. Phillips; Richmond Gorman; Robert A. Kingsley; Rosemary Audu; Rosina A.A. Carr; Saad El Kabbaj; Saba Gargouri; Saber Masmoudi; Safietou Sankhe; Sahra Isse Mohamed; Salma MHALLA; Salome Hosch; Samar Kamal Kassim; Samar Metha; Sameh Trabelsi; Sanaa Lemriss; Sara Hassan Agwa; Sarah Wambui Mwangi; Seydou Doumbia; Sheila Makiala-Mandanda; Sherihane Aryeetey; Shymaa S. Ahmed; SIDI MOHAMED AHMED; Siham Elhamoumi; Sikhulile Moyo; Silvia Lutucuta; Simani Gaseitsiwe; Simbirie Jalloh; Soafy Andriamandimby; Sobajo Oguntope; Solene Grayo; Sonia Lekana-Douki; Sophie Prosolek; Soumeya Ouangraoua; Stephanie van Wyk; Stephen F. Schaffner; Stephen Kanyerezi; Steve AHUKA-MUNDEKE; Steven Rudder; Sureshnee Pillay; Susan Nabadda; Sylvie Behillil; Sylvie L. Budiaki; Sylvie van der Werf; Tapfumanei Mashe; Tarik Aanniz; Thabo Mohale; Thanh Le-Viet; Thirumalaisamy P. Velavan; Tobias Schindler; Tongai Maponga; Trevor Bedford; Ugochukwu J. Anyaneji; Ugwu Chinedu; Upasana Ramphal; Vincent Enouf; Vishvanath Nene; Vivianne Gorova; Wael H. Roshdy; Wasim Abdul Karim; William K. Ampofo; Wolfgang Preiser; Wonderful T. Choga; Yahaya ALI ALI AHMED; Yajna Ramphal; Yaw Bediako; Yeshnee Naidoo; Yvan Butera; Zaydah R. de Laurent; Ahmed E.O. Ouma; Anne von Gottberg; George Githinji; Matshidiso Moeti; Oyewale Tomori; Pardis C. Sabeti; Amadou A. Sall; Samuel O. Oyola; Yenew K. Tebeje; Sofonias K. Tessema; Tulio de Oliveira; Christian Happi; Richard Lessells; John Nkengasong; Eduan Wilkinson.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273906

RESUMO

Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks. One-Sentence SummaryExpanding Africa SARS-CoV-2 sequencing capacity in a fast evolving pandemic.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272784

RESUMO

Prolonged infections in immunocompromised individuals may be a source for novel SARS-CoV-2 variants, particularly when both the immune system and antiviral therapy fail to clear the infection, thereby promoting adaptation. Here we describe an approximately 16-month case of SARS-CoV-2 infection in an immunocompromised individual. Following monotherapy with the monoclonal antibody Bamlanivimab, the individuals virus was resistant to this antibody via a globally unique Spike amino acid variant (E484T) that evolved from E484A earlier in infection. With the emergence and spread of the Omicron Variant of Concern, which also contains Spike E484A, E484T may arise again as an antibody-resistant derivative of E484A.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272083

RESUMO

BackgroundUncertainties remain about the benefit of a 3rd COVID-19 vaccine for people with attenuated response to earlier vaccines. This is of particular relevance for people with multiple sclerosis (pwMS) treated with anti-CD20 therapies and fingolimod, who have substantially reduced antibody responses to initial vaccine course. MethodsPwMS taking part in a seroprevalence study without a detectable IgG response following COVID-19 vaccines 1&2 were invited to participate. Participants provided a dried blood spot +/-venous blood sample 2-12 weeks following COVID-19 vaccine 3. Humoral and T cell responses to SARS-CoV-2 spike protein and nucleocapsid antigen were measured. The relationship between evidence of prior COVID-19 infection and immune response to COVID-19 vaccine 3 was evaluated using Fishers exact test. ResultsOf 81 participants, 79 provided a dried blood spot sample, of whom 38 also provided a whole blood sample; 2 provided only whole blood. Anti-SARS-CoV-2-spike IgG seroconversion post-COVID-19 vaccine 3 occurred in 26/79 (33%) participants; 26/40 (65%) had positive T-cell responses. Overall, 31/40 (78%) demonstrated either humoral or cellular immune response post-COVID-19 vaccine 3. There no association between laboratory evidence of prior COVID-19 infection and anti-spike seroconversion following COVID-19 vaccine 3. ConclusionsApproximately one third of pwMS who were seronegative after initial COVID-19 vaccination seroconverted after booster (third) vaccination, supporting the use of boosters in this group. Almost 8 out of 10 had a measurable immune response following 3rd COVID-19 vaccine. Key messagesO_ST_ABSWhat is already knownC_ST_ABSThe benefits of COVID vaccination are well described. It is unknown whether there is additional benefit afforded from a third COVID-19 vaccination in those people who have failed to mount a serological response to their initial vaccine course. What this study addsApproximately one third of people with MS in our study, all of whom had failed to response to initial vaccine course, developed anti-spike antibodies following a third COVID-19 vaccine. Two-thirds of participants had T cell response to vaccination. No people taking fingolimod appeared to mount a T cell response to vaccination. How this study might influence practiceThese findings highlight potential benefits of booster vaccinations to a substantial proportion of immunosuppressed people who have failed to respond to initial vaccination course. The clinical correlates of antibody and T-cell responses to COVID-19 remain uncertain but they are almost certainly associated with milder subsequent disease in the general population.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264023

RESUMO

BackgroundCD20 depletion is a highly-effective treatment for relapsing multiple sclerosis that maintains B cells at low levels through six monthly dosing of 600mg ocrelizumab. This dosing schedule is associated with inhibition of seroconversion following SARS-CoV-2 vaccination, in contrast to the high levels of seroconversion following treatment with alemtuzumab and cladribine tablets. A number of emerging reports suggest that repopulation of 1-3% B cells facilitates seroconversion after CD20-depletion. The frequency of this occurring following repeated ocrelizumab treatment, after other DMT, and after treatment cessation is largely unknown. MethodsRelapse data, lymphocyte and CD19 B cell numbers were extracted from phase II ocrelizumab extension study (NCT00676715) data supplied by the manufacturer via the Vivli Inc, trial data-request portal. Repopulation data of oral cladribine from the phase III CLARITY study (NCT00213135) was supplied by the European Medicines Agency; and the alemtuzumab phase III CARE-MS I (NCT00530348) and CARE-MS II (NCT00548405) trial data were supplied by the manufacturer via the clinicalstudydatarequest.com portal. ResultsOnly 3-5% of people with MS exhibit 1% B cells at 6 months after the last infusion following 3-4 cycles of ocrelizumab, compared to 50-55% at 9 months, and 85-90% at 12 months. During this time relapses occurred at consistent disease breakthrough rates compared to people during standard therapy. In contrast most people (90-100%) exhibited more than 1% B cells during treatment with either cladribine or alemtuzumab. ConclusionsFew people repopulate peripheral B cells with standard ocrelizumab dosing, however an extending the dosing interval by 3-6 months may allow many more people to potentially seroconvert in the relative absence of excess relapse-activity. Most people demonstrate B cell repletion within 3 months of the last treatment of alemtuzumab and cladribine. This may help protect against severe COVID-19.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261326

RESUMO

ObjectiveTo investigate the effect of disease modifying therapies on serological response to SARS-CoV2 vaccines in people with multiple sclerosis Methods473 people with multiple sclerosis from 5 centres provided one or more dried blood spot samples and questionnaires about COVID-19. Information about disease and drug history was extracted from their medical records. Dried blood spots were eluted and tested for antibodies to SARS-CoV2 receptor binding domain. Seropositivity was expressed according to validated cut-off indices. Antibody titers were partitioned into tertiles using data from people on no disease modifying therapy as a reference. We calculated the odds ratio of seroconversion (Univariate logistic regression) and compared quantitative vaccine response (Kruskal Wallis) following SARS-CoV2 vaccine according to disease modifying therapy. We used regression modelling to explore the effect of factors including vaccine timing, treatment duration, age, vaccine type and lymphocyte count on vaccine response. ResultsCompared to no disease modifying therapy, the use of anti-CD20 monoclonal antibodies (odds ratio 0.03; 95% confidence interval 0.01-0.06, p<0.001) and fingolimod (odds ratio 0.41; 95% confidence interval 0.01-0.12) were associated with lower seroconversion following SARS-CoV2 vaccine. All other drug groups did not differ significantly from the untreated cohort. Time since last anti-CD20 treatment and total time on treatment were significantly related with response to vaccination. Vaccine type significantly predicted seroconversion, but not in those on anti-CD20 medications. InterpretationSome disease modifying therapies carry a risk of attenuated response to SARS-CoV2 vaccination in people with MS. We provide recommendations for the practical management of this patient group.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-451375

RESUMO

Escape variants of SARS-CoV-2 are threatening to prolong the COVID-19 pandemic. To address this challenge, we developed multivalent protein-based minibinders as potential prophylactic and therapeutic agents. Homotrimers of single minibinders and fusions of three distinct minibinders were designed to geometrically match the SARS-CoV-2 spike (S) trimer architecture and were optimized by cell-free expression and found to exhibit virtually no measurable dissociation upon binding. Cryo-electron microscopy (cryoEM) showed that these trivalent minibinders engage all three receptor binding domains on a single S trimer. The top candidates neutralize SARS-CoV-2 variants of concern with IC50 values in the low pM range, resist viral escape, and provide protection in highly vulnerable human ACE2-expressing transgenic mice, both prophylactically and therapeutically. Our integrated workflow promises to accelerate the design of mutationally resilient therapeutics for pandemic preparedness. One-Sentence SummaryWe designed, developed, and characterized potent, trivalent miniprotein binders that provide prophylactic and therapeutic protection against emerging SARS-CoV-2 variants of concern.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-449355

RESUMO

With global vaccination efforts against SARS-CoV-2 underway, there is a need for rapid quantification methods for neutralizing antibodies elicited by vaccination and characterization of their strain dependence. Here, we describe a designed protein biosensor that enables sensitive and rapid detection of neutralizing antibodies against wild type and variant SARS-CoV-2 in serum samples. More generally, our thermodynamic coupling approach can better distinguish sample to sample differences in analyte binding affinity and abundance than traditional competition based assays.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-440678

RESUMO

The COVID-19 pandemic has demonstrated the need for exploring different diagnostic and therapeutic modalities to tackle future viral threats. In this vein, we propose the idea of sentinel cells, cellular biosensors capable of detecting viral antigens and responding to them with customizable responses. Using SARS-CoV-2 as a test case, we developed a live cell sensor (SARSNotch) using a de novo-designed protein binder against the SARS-CoV-2 Spike protein. SARSNotch is capable of driving custom genetically-encoded payloads in immortalized cell lines or in primary T lymphocytes in response to purified SARS-CoV-2 Spike or in the presence of Spike-expressing cells. Furthermore, SARSNotch is functional in a cellular system used in directed evolution platforms for development of better binders or therapeutics. In keeping with the rapid dissemination of scientific knowledge that has characterized the incredible scientific response to the ongoing pandemic, we extend an open invitation for others to make use of and improve SARSNotch sentinel cells in the hopes of unlocking the potential of the next generation of smart antiviral therapeutics.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-433110

RESUMO

Despite the introduction of public health measures and spike protein-based vaccines to mitigate the COVID-19 pandemic, SARS-CoV-2 infections and deaths continue to rise. Previously, we used a structural design approach to develop picomolar range miniproteins targeting the SARS-CoV-2 receptor binding domain. Here, we investigated the capacity of modified versions of one lead binder, LCB1, to protect against SARS-CoV-2-mediated lung disease in human ACE2-expressing transgenic mice. Systemic administration of LCB1-Fc reduced viral burden, diminished immune cell infiltration and inflammation, and completely prevented lung disease and pathology. A single intranasal dose of LCB1v1.3 reduced SARS-CoV-2 infection in the lung even when given as many as five days before or two days after virus inoculation. Importantly, LCB1v1.3 protected in vivo against a historical strain (WA1/2020), an emerging B.1.1.7 strain, and a strain encoding key E484K and N501Y spike protein substitutions. These data support development of LCB1v1.3 for prevention or treatment of SARS-CoV-2 infection.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20232520

RESUMO

Zimbabwe reported its first case of SARS-Cov-2 infection in March 2020, and case numbers increased to more than 8,099 to 16th October 2020. An understanding of the SARS-Cov-2 outbreak in Zimbabwe will assist in the implementation of effective public health interventions to control transmission. Nasopharyngeal samples from 92,299 suspected and confirmed COVID-19 cases reported in Zimbabwe between 20 March and 16 October 2020 were obtained. Available demographic data associated with those cases identified as positive (8,099) were analysed to describe the national breakdown of positive cases over time in more detail (geographical location, sex, age and travel history). The whole genome sequence (WGS) of one hundred SARS-CoV-2-positive samples from the first 120 days of the epidemic in Zimbabwe was determined to identify their relationship to one another and WGS from global samples. Overall, a greater proportion of infections were in males (55.5%) than females (44.85%), although in older age groups more females were affected than males. Most COVID-19 cases (57 %) were in the 20-40 age group. Eight lineages, from at least 25 separate introductions into the region were found using comparative genomics. Of these, 95% had the D614G mutation on the spike protein which was associated with higher transmissibility than the ancestral strain. Early introductions and spread of SARS-CoV-2 were predominantly associated with genomes common in Europe and the United States of America (USA), and few common in Asia at this time. As the pandemic evolved, travel-associated cases from South Africa and other neighbouring countries were also recorded. Transmission within quarantine centres occurred when travelling nationals returning to Zimbabwe. International and regional migration followed by local transmission were identified as accounting for the development of the SARS-CoV-2 epidemic in Zimbabwe. Based on this, rapid implementation of public health interventions are critical to reduce local transmission of SARS-CoV-2. Impact of the predominant G614 strain on severity of symptoms in COVID-19 cases needs further investigation.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-406611

RESUMO

Antibodies are widely used in biology and medicine, and there has been considerable interest in multivalent antibody formats to increase binding avidity and enhance signaling pathway agonism. However, there are currently no general approaches for forming precisely oriented antibody assemblies with controlled valency. We describe the computational design of two-component nanocages that overcome this limitation by uniting form and function. One structural component is any antibody or Fc fusion and the second is a designed Fc-binding homo-oligomer that drives nanocage assembly. Structures of 8 antibody nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage match the corresponding computational models. Antibody nanocages targeting cell-surface receptors enhance signaling compared to free antibodies or Fc-fusions in DR5-mediated apoptosis, Tie2-mediated angiogenesis, CD40 activation, and T cell proliferation; nanocage assembly also increases SARS-CoV-2 pseudovirus neutralization by -SARS-CoV-2 monoclonal antibodies and Fc-ACE2 fusion proteins. We anticipate that the ability to assemble arbitrary antibodies without need for covalent modification into highly ordered assemblies with different geometries and valencies will have broad impact in biology and medicine.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-234914

RESUMO

We used two approaches to design proteins with shape and chemical complementarity to the receptor binding domain (RBD) of SARS-CoV-2 Spike protein near the binding site for the human ACE2 receptor. Scaffolds were built around an ACE2 helix that interacts with the RBD, or de novo designed scaffolds were docked against the RBD to identify new binding modes. In both cases, designed sequences were optimized first in silico and then experimentally for target binding, folding and stability. Nine designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked bona fide SARS-CoV-2 infection of Vero E6 cells with IC50 values ranging from 35 pM to 35 nM; the most potent of these -- 56 and 64 residue hyperstable proteins made using the second approach -- are roughly six times more potent on a per mass basis (IC50 ~ 0.23 ng/ml) than the best monoclonal antibodies reported thus far. Cryo-electron microscopy structures of the SARS-CoV-2 spike ectodomain trimer in complex with the two most potent minibinders show that the structures of the designs and their binding interactions with the RBD are nearly identical to the computational models, and that all three RBDs in a single Spike protein can be engaged simultaneously. These hyperstable minibinders provide promising starting points for new SARS-CoV-2 therapeutics, and illustrate the power of computational protein design for rapidly generating potential therapeutic candidates against pandemic threats.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-206946

RESUMO

Naturally occurring allosteric protein switches have been repurposed for developing novel biosensors and reporters for cellular and clinical applications 1, but the number of such switches is limited, and engineering them is often challenging as each is different. Here, we show that a very general class of allosteric protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which binding of a peptide key triggers biological outputs of interest 2. Using broadly applicable design principles, we allosterically couple binding of protein analytes of interest to the reconstitution of luciferase activity and a bioluminescent readout through the association of designed lock and key proteins. Because the sensor is based purely on thermodynamic coupling of analyte binding to switch activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We demonstrate the modularity of this platform by creating biosensors that, with little optimization, sensitively detect the anti-apoptosis protein Bcl-2, the hIgG1 Fc domain, the Her2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac Troponin I and an anti-Hepatitis B virus (HBV) antibody that achieve the sub-nanomolar sensitivity necessary to detect clinically relevant concentrations of these molecules. Given the current need for diagnostic tools for tracking COVID-19 3, we use the approach to design sensors of antibodies against SARS-CoV-2 protein epitopes and of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The latter, which incorporates a de novo designed RBD binder, has a limit of detection of 15pM with an up to seventeen fold increase in luminescence upon addition of RBD. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20149104

RESUMO

Evidence-based public health approaches that minimize the introduction and spread of new SARS-CoV-2 transmission clusters are urgently needed in the United States and other countries struggling with expanding epidemics. Here we analyze 247 full-genome SARS-CoV-2 sequences from two nearby communities in Wisconsin, USA, and find surprisingly distinct patterns of viral spread. Dane County had the 12th known introduction of SARS-CoV-2 in the United States, but this did not lead to descendant community spread. Instead, the Dane County outbreak was seeded by multiple later introductions, followed by limited community spread. In contrast, relatively few introductions in Milwaukee County led to extensive community spread. We present evidence for reduced viral spread in both counties, and limited viral transmission between counties, following the statewide "Safer at Home" public health order, which went into effect 25 March 2020. Our results suggest that early containment efforts suppressed the spread of SARS-CoV-2 within Wisconsin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...