Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 13: 100249, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35499002

RESUMO

Carnauba wax nano and micro-sized emulsions and hydroxypropyl methylcellulose coatings, alone or combined with ginger essential oils (GEO) were applied on papayas and evaluated under several storage conditions. In a first experiment, storage parameters were: 6 days at 22 °C, and 9 days at 13 °C followed by 5 days at 22 °C. In a second experiment, storage was: 5 days at 22 °C, and 10 days at 16 °C followed by 3 days at 22 °C. Coating effects were dependent on storage conditions. While fruits were in cold storage, there were few changes; however, at 22 °C, the differences between coatings became more evident. Nanoemulsions maintained papaya quality during storage by retarding firmness loss, color changes, and reducing respiration rates, resulting in delayed ripening. GEO exhibited some positive effect on fungal disease control. Nanoemulsion-based coatings improved shelf life by reducing weight loss, color development, and slowing ripening of papaya fruit.

2.
Food Chem ; 388: 132902, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447579

RESUMO

The internal breakdown (IB) is a premature and uneven mango pulp ripening physiological disorder that is noticed only when the fruit is sliced for consumption. Thus, there is a demand for analytical methods to detect IB in mangoes to avoid consumer dissatisfaction and reduce postharvest waste. In this work, physicochemical and volatile compounds were determined to evaluate the ability to predict pulp IB. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of the data show that color, firmness, and volatiles compounds are important to give some information about the physiological changes caused by IB. The volatile compounds methacrylic acid, ethyl ester, isopentyl ethanoate, limonene oxide, (E)-2-pentenal, tetradecane, and γ-elemene were identified as chemical markers of IB. Therefore, mango physical and chemical characteristics combined with PCA and PLS-DA were successfully employed for the identification of IB in mangoes, showing significant differences between healthy and IB fruits.


Assuntos
Mangifera , Análise Discriminante , Frutas/química , Análise dos Mínimos Quadrados , Mangifera/química , Análise de Componente Principal
3.
Food Chem ; 332: 127383, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615383

RESUMO

This study represents a rapid and non-destructive approach based on mid-infrared (MIR) spectroscopy, time domain nuclear magnetic resonance (TD-NMR), and machine learning classification models (ML) for monitoring soluble pectin content (SPC) changes in orange juice. Current reference methods of SPC in orange juice are laborious, requiring several extractions with successive adjustments hindering rapid process intervention. 109 fresh orange juices samples, representing different harvests, were analysed using MIR, TD-NMR and reference method. Unsupervised algorithms were applied for natural clustering of MIR and TD-NMR data in two groups. Analyses of variance of the two MIR and TD-NMR datasets show that only the MIR groups were different at 95% confidence for SPC average values. This approach allows build classification models based on MIR data achieving 85% and 89% of accuracy. Results demonstrate that MIR/ML can be a suitable strategy for the quick assessment of SPC trends in orange juices.


Assuntos
Citrus sinensis/química , Sucos de Frutas e Vegetais/análise , Aprendizado de Máquina , Pectinas/química , Citrus sinensis/metabolismo , Análise por Conglomerados , Humanos , Espectroscopia de Ressonância Magnética , Pectinas/metabolismo , Análise de Componente Principal , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA