Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-518541

RESUMO

Human Angiotensin-Converting Enzyme 2 (hACE2) is the major receptor enabling host cell invasion by SARS-CoV-2 via interaction with Spike glycoprotein. The murine ACE2 ortholog does not interact efficiently with SARS-CoV-2 Spike and therefore the conventional laboratory mouse strains are not permissive to SARS-CoV-2 replication. Here, we generated new hACE2 transgenic mice, which harbor the hACE2 gene under the human keratin 18 promoter, in C57BL/6 "HHD-DR1" background. HHD-DR1 mice are fully devoid of murine Major Histocompatibility Complex (MHC) molecules of class-I and -II and express only MHC molecules from Human Leukocyte Antigen (HLA) HLA 02.01, DRA01.01, DRB1.01.01 alleles, widely expressed in human populations. We selected three transgenic strains, with various hACE2 mRNA expression levels and distinctive profiles of lung and/or brain permissiveness to SARS-CoV-2 replication. Compared to the previously available B6.K18-ACE22Prlmn/JAX mice, which have limited permissiveness to SARS-CoV-2 Omicron replication, these three new hACE2 transgenic strains display higher levels of hACE2 mRNA expression, associated with high permissiveness to the replication of SARS-CoV-2 Omicron sub-variants. As a first application, one of these MHC- and ACE2-humanized strains was successfully used to show the efficacy of a lentiviral vector-based COVID-19 vaccine candidate.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-505985

RESUMO

Anosmia was identified as a hallmark of COVID-19 early in the pandemic, however, with the emergence of variants of concern, the clinical profile induced by SARS-CoV-2 infection has changed, with anosmia being less frequent. Several studies have focused on the neuropathogenesis of the original SARS-CoV-2, but little is known about the neuropathological potential of the variants. Here, we assessed the clinical, olfactory and inflammatory conditions of golden hamsters infected with the original SARS-CoV-2, its ORF7-deleted mutant, and three variants: Gamma, Delta and Omicron/BA.1. We show that infected animals developed a variant-dependent clinical disease, and that the ORF7 of SARS-CoV-2 contribute to causing olfactory disturbances. Conversely, all SARS-CoV-2 variants were found to be neuroinvasive, regardless of the clinical presentation they induce. With newly-generated nanoluciferase-expressing SARS-CoV-2, we validated the olfactory pathway as a main entry point towards the brain, confirming that neuroinvasion and anosmia are independent phenomena upon SARS-CoV-2 infection. Graphical asbtract O_FIG O_LINKSMALLFIG WIDTH=150 HEIGHT=200 SRC="FIGDIR/small/505985v1_ufig1.gif" ALT="Figure 1"> View larger version (49K): org.highwire.dtl.DTLVardef@1dd3fd3org.highwire.dtl.DTLVardef@896aeaorg.highwire.dtl.DTLVardef@1ca6157org.highwire.dtl.DTLVardef@1bcd84c_HPS_FORMAT_FIGEXP M_FIG C_FIG

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-478159

RESUMO

As the COVID-19 pandemic continues and new SARS-CoV-2 variants of concern emerge, the adaptive immunity initially induced by the first-generation COVID-19 vaccines wains and needs to be strengthened and broadened in specificity. Vaccination by the nasal route induces mucosal humoral and cellular immunity at the entry point of SARS-CoV-2 into the host organism and has been shown to be the most effective for reducing viral transmission. The lentiviral vaccination vector (LV) is particularly suitable for this route of immunization because it is non-cytopathic, non-replicative and scarcely inflammatory. Here, to set up an optimized cross-protective intranasal booster against COVID-19, we generated an LV encoding stabilized Spike of SARS-CoV-2 Beta variant (LV::SBeta-2P). mRNA vaccine-primed and -boosted mice, with waning primary humoral immunity at 4 months post-vaccination, were boosted intranasally with LV::SBeta-2P. Strong boost effect was detected on cross-sero-neutralizing activity and systemic T-cell immunity. In addition, mucosal anti-Spike IgG and IgA, lung resident B cells, and effector memory and resident T cells were efficiently induced, correlating with complete pulmonary protection against the SARS-CoV-2 Delta variant, demonstrating the suitability of the LV::SBeta-2P vaccine candidate as an intranasal booster against COVID-19.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-468428

RESUMO

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized. ACM Reference FormatAbigail Dommer1{dagger}, Lorenzo Casalino1{dagger}, Fiona Kearns1{dagger}, Mia Rosenfeld1, Nicholas Wauer1, Surl-Hee Ahn1, John Russo,2 Sofia Oliveira3, Clare Morris1, AnthonyBogetti4, AndaTrifan5,6, Alexander Brace5,7, TerraSztain1,8, Austin Clyde5,7, Heng Ma5, Chakra Chennubhotla4, Hyungro Lee9, Matteo Turilli9, Syma Khalid10, Teresa Tamayo-Mendoza11, Matthew Welborn11, Anders Christensen11, Daniel G. A. Smith11, Zhuoran Qiao12, Sai Krishna Sirumalla11, Michael OConnor11, Frederick Manby11, Anima Anandkumar12,13, David Hardy6, James Phillips6, Abraham Stern13, Josh Romero13, David Clark13, Mitchell Dorrell14, Tom Maiden14, Lei Huang15, John McCalpin15, Christo- pherWoods3, Alan Gray13, MattWilliams3, Bryan Barker16, HarindaRajapaksha16, Richard Pitts16, Tom Gibbs13, John Stone6, Daniel Zuckerman2*, Adrian Mulholland3*, Thomas MillerIII11,12*, ShantenuJha9*, Arvind Ramanathan5*, Lillian Chong4*, Rommie Amaro1*. 2021. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy ofDeltaSARS-CoV-2 in a Respiratory Aerosol. In Supercomputing 21: International Conference for High Perfor-mance Computing, Networking, Storage, and Analysis. ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-463779

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g., cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-429211

RESUMO

Non-integrative, non-cytopathic and non-inflammatory lentiviral vectors are particularly suitable for mucosal vaccination and recently emerge as a promising strategy to elicit sterilizing prophylaxis against SARS-CoV-2 in preclinical animal models. Here, we demonstrate that a single intranasal administration of a lentiviral vector encoding a prefusion form of SARS-CoV-2 spike glycoprotein induces full protection of respiratory tracts and totally avoids pulmonary inflammation in the susceptible hamster model. More importantly, we generated a new transgenic mouse strain, expressing the human Angiotensin Converting Enzyme 2, with unprecedent brain permissibility to SARS-CoV-2 replication and developing a lethal disease in <4 days post infection. Even though the neurotropism of SARS-CoV-2 is now well established, so far other vaccine strategies under development have not taken into the account the protection of central nervous system. Using our highly stringent transgenic model, we demonstrated that an intranasal booster immunization with the developed lentiviral vaccine candidate achieves full protection of both respiratory tracts and brain against SARS-CoV-2.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-390187

RESUMO

We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD. We present several novel scientific discoveries, including the elucidation of the spikes full glycan shield, the role of spike glycans in modulating the infectivity of the virus, and the characterization of the flexible interactions between the spike and the human ACE2 receptor. We also demonstrate how AI can accelerate conformational sampling across different systems and pave the way for the future application of such methods to additional studies in SARS-CoV-2 and other molecular systems. ACM Reference FormatLorenzo Casalino1{dagger}, Abigail Dommer1{dagger}, Zied Gaieb1{dagger}, Emilia P. Barros1, Terra Sztain1, Surl-Hee Ahn1, Anda Trifan2,3, Alexander Brace2, Anthony Bogetti4, Heng Ma2, Hyungro Lee5, Matteo Turilli5, Syma Khalid6, Lillian Chong4, Carlos Simmerling7, David J. Hardy3, Julio D. C. Maia3, James C. Phillips3, Thorsten Kurth8, Abraham Stern8, Lei Huang9, John McCalpin9, Mahidhar Tatineni10, Tom Gibbs8, John E. Stone3, Shantenu Jha5, Arvind Ramanathan2*, Rommie E. Amaro1*. 2020. AI-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics. In Supercomputing 20: International Conference for High Performance Computing, Networking, Storage, and Analysis. ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...